
IFELINES™

TM

$3.00 August 1983 Volume IV, No. 3 (ISSN 0279-2575, LISPS 597-830)

/!■ ,r J i
/JGMI JT

ja M'■■■■■■a
floaaaaa

PL/I FROM THE TOP DOWN
IMPROVE YOUR MATE-PMATE

All you dBASE II hotshots
are about to get what you
deserve.

J
M lXI 1IIIIIIIIIIIIIIIIIIIIIII

You've written all those slick
dBASE II programs.

Business and personal
programs. Scientific and
educational applications.
Packages for just about
every conceivable informa-
tion handling need.

And everybody who
sees them loves them because
they're so powerful, friendly and easy to use.

But that’s just not good enough.
Uh-uh.

We'll also provide additional “how to''
information to get you off and running as a
software publisher sooner.

And we'll make your products part of
our Marketing Referral Service. Besides put-
ting you on our referral hotline, we'll publish
your program descriptions and contact
information in dBASE II Applied, a directory
now in computer stores world-wide.

Go for it.
But we can't do any of this until we

hear from you.
For details, write RunTime Applications

Development, Ashton-Tate, 10150 West
Jefferson Boulevard, Culver City, CA 90230.

Or better yet, just call (213) dBASE
204-5570. And get what you
deserve today.

Because now you can get the gold and the
glory that you really deserve.

Here's how.
We've just released our dBASE II

RunTime™ application development module.
And it can turn you into an instant

software publisher.
The RunTime module condenses and

encodes your source files, protecting your
special insights and techniques, so you can
sell your code without giving the show away.

RunTime also protects your margins
and improves your price position in the
marketplace. If your client has dBASE II, all
he needs is your encoded application. If not,
all you need to install your application is the
much less expensive RunTime module.

We'll tell the world.
With your license for the dBASE II

RunTime module, we provide labels that
identify your program as a dBASE II applica-
tion, and you get the benefit of all the
dBASE II marketing efforts.

ASHTON TATE ■

©Ashton-Tate 1983.

Lifelines

The Software Magazine

Dealer/Customer Service Manager: Crescent R. Varrone
Circulation Manager: Trina McDonald
Advertising Manager: Carolann Abrams
New Versions Editor: Lee Ramos
Printing Consultant: Sid Robkoff/E&S Graphics
Cover: Kate Gartner

Publisher: Edward H. Currie
Editor in Chief: Susan E. Sawyer
Production Manager: Kate Gartner
Technical Editors: Al Bloch, Bob Hinkley
Art Director: Kate Gartner
Typographer: Rosalee Feibish

Software Notes

33 Macro Of The Month
Todd Katz

Product Status Reports

18 New Versions for CB-80 Compiler
and Access Manager

Robert P. VanNatta

35 New Products

35 New Versions

Miscellaneous

32 Users Group Corner

Editorial

2 Bountiful Books And Bytes
Edward H. Currie

Features

3 Improve Your AAATE
Steven Fisher

11 PL/I From The Top Down
Chapter One— 'Getting It Up'

Bruce H. Hunter

19 TXTASM DB Format
Thomas Hill

26 Hardware As Software:
The Hayes Smartmodem

Davis A. Foulger

27 What To Do At The A> >
Which Your Dealer Never Told You

Al Bloch

Copyright © 1983, by Lifelines Publishing Corporation. No portion of this
publication may be reproduced without the written permission of the
publisher. The single issue price is $3.00 for copies sent to destinations
in the U.S., Canada, or Mexico. The single issue price for copies sent to
all other countries is $4.30. All checks should be made payable to Lifelines
Publishing Corporation. Foreign checks must be in U.S. dollars, drawn on
a U.S. bank; checks, money order, VISA, and MasterCard are acceptable.
All orders must be pre-paid. Please send all correspondence to the
Publisher at the address below.

Program names are generally TMs of their authors or owners. The CP/M User Group is not affiliated with
Digital Research, Inc.
Lifelines-TM Lifelines Publishing Corp.
The Software Magazine-TM Lifelines Publishing Corp.
SB-80, SB-86—TMs Lifeboat Associates
CP/M and CP/M-86 reg. TMs, Access Manager, PLI-80, PLI-86, Pascal MT+, MP/M, TMs of Digital Research Inc.
BASIC-80, MBASIC, Fortran 80-TMs Microsoft, Inc.
Wordmaster & WordStar-TMs MicroPro International Corp.
PMATE—TMs Phoenix Software Associates, Ltd.
Z80-TM Zilog Corp.

Lifelines (ISSN 0279-2575,USPS 597-830) is published monthly at a subscrip-
tion price of $24 for twelve issues, when destined for the U.S. Canada,
or Mexico, $50 when destined for any other country. Second-class postage
paid at Smithtown, New York, and other locations. POSTMASTER, please
send changes of address to Lifelines Publishing Corporation, 1651 Third
Avenue, New York, NY 10028.

Editorial Bountiful Books And Bytes
bv Edward H. Currie

Computer books as well as computer
software are in abundance, but much
of what might pass for important
works is, in fact, more a result of
greed than altruism. There are, of
course, notable exceptions in each
category and this column has made
an effort to point out some of the
good, the bad and the ugly.
Recently several excellent texts have
appeared which are noteworthy.
One such book is that of Lance A.
Leventhal and Wink Saville entitled
"8080/8085 Assembly Language
Subroutines" which is published by
Osbome/McGraw Hill (1983). This
book was designed by the authors to
serve as both a reference text and a
source for the assembly language
programmer. Particular emphasis
has been placed upon code conver-
sions, array manipulations, shifting
functions, string manipulations, sor-
ting, searching, bit manipulation
and arithmetic subroutines. The text
is beautifully designed with many,
many examples complete with
source code. The routines included
can actually be used to save hours of
tedious development time. Whether
you program in assembly for fun or
profit check this one out. You'll be
impressed!
Mitchell Waite has made yet another
important contribution with the
latest release of a book by Waite and
Lafore. You may recall that the CP/M
Primer was reviewed in an earlier
editorial. This latest contribution,
entitled "Soul of CP/M" (can we ex-
pect "Return of CP/M," "CP/M II,"
"Son of CP/M," etc. ???), is subtitled
"How to Use the Hidden Power of
Your CP/M System." This is an ex-
cellent treatment for those of you
who are anxious to learn assembly
language and how to communicate
with the CP/M operating system en-
vironment via assembly language.
The book begins with defining pro-
gram transportability, system calls,
and CP/M's Golden Rule, "A chicken
sandwich in one city is a chicken
sandwich in all cities." It's left as an
exercise for the reader of this column
to determine the correct interpreta-
tion of the latter. One of the nicest

features is that the book is designed
to be used next to your CP/M system
for true computer- aided instruction.
One particularly important treat-
ment is the interfacing of assembly
language routines to BASIC. Waite
and Lafore have made a valuable ad-
dition to microcomputer literature.
Why not add this to your library? It's
published by Howard W. Sams &
Co., Inc.
Que Corporation, 7960 Castleway
Drive, Indianapolis, Indiana 46250,
(317) 842-7162 has just published the
second edition of "IBM-PC Expan-
sion & Software Guide." Three in-
dexes are provided — Product Name,
Vendor and Advertiser — to enable
you to quickly find a particular pro-
duct. In addition the book is divided
into sections entitled Hardware,
Software, Periodicals, Books and
Directories, Supplies and Services,
Future Products and IBM-PC
Dealers. Take a look at this book if
you are an IBM-PC owner or just en-
joy reading about the wealth of prod-
ucts which exist for this machine.
If you are an aspiring FORTH pro-
grammer, or would just enjoy look-
ing at a text on FORTH, get a copy of
Leo Brodie's "Starting Forth"
published by Prentice-Hall. This is
undoubtedly the finest book avail-
able on FORTH and sets new stan-
dards for tutorial texts. Richly il-
lustrated with examples and enter-
taining cartoon depictions of impor-
tant concepts, both the professional
and beginning FORTH programmer
will find this an important addition
to their library.

This text is designed to be used in
conjunction with your favorite
machine and FORTH implementa-
tion but can be used stand alone if
desired. Once you start reading
you'll find it difficult to put it down,
and you frequently find yourself
amused by the method of presenta-
tion. So venture FORTH and check it
out!

If you are one of the many interested
in learning IBM-PC BASIC take a
look at "Learning IBM BASIC for the
Personal Computer." This text offers

Chapters entitled "Getting Started,"
"Speak To Me Oh Great Computer,"
"Strings," "Variable Precision Math,"
"Display Formatting," "Arrays,"
"Sound," Miscellaneous and "Pro-
gram Control." Specific examples are
presented for each BASIC function
for the reader to enter and experi-
ment with on his computer. This is a
fine book for the beginning program-
mer but of little or no interest to the
advanced BASIC programmer. This
book is published by Compusoft
Publishing of San Diego.

Recently, I connected my IBM-PC to
my Godbout system in the mistaken
belief that a sixteen-bit machine
relegated to the status of expensive
terminal could be used to com-
municate on occasion with my
8085/8088 machine. Sadly, the IBM-
PC was unable to keep up with the
8085/8088 even at 9600 baud. Oh
well, back to the diawing boards.
Mouse Systems Optical Mouse is an
interesting device and offers some in-
terestingcapability ina variety of con-
texts. Microsoft has announced their
'mouse' and is currently offering
products which support it. Mice are
Nice but as yet are a long way from
the Cat's Meow.
Virtual disks are increasing in
popularity for both eight- and six-
teen-bit machines as memory contin-
ues to decline in price. A number of
suppliers offers 256K boards for S-100
machines and most IBM-PC memory
suppliers offer virtual disk software
with their products. The user should
be aware, however, that while literal
disk accesses are replaced by virtual
disk accesses at some fifty fold speed
increase, there is an increased risk of
degradation in the event of memory
chip or power failure. If you are using
a virtual disk be sure to do frequent
"SAVES" to the disk to protect your
files. "An idea once conceived must
be implemented" seems to be the
Golden Rule of all of computerdom
so watch out!
It looks as though the new Hayes
Smart Modem (300/1200 baud) is
causing a revolution in the world of
(continued on page 36)
Lifelines/The Software Magazine, August 1983

Feature Improve Your MATE

by Steven Fisher
PMATE is an excellent text editor for working with pro-
gram source code. However, we can enhance it with these
changes: automatic use of the proper console and printer
routines for MP/M and CP/M Plus; fully implementing in-
stant commands with WordStar compatibility; and com-
puting some of the installation controls. Figure 2 is an 8080
assembly listing of the version 3.21 PMATE customization
area with these changes implemented.

Automatic interface

(RAWCHR). When the BDOS logic is used, the List Out-
put Status routine in the BIOS is also linked.

Instant commands compatible with
WordStar

The PMATE User Manual and Interface Guide, Chapter 7,
describes an Instant Command Table containing 59 en-
tries. Much of the power designed into the instant com-
mands was unavailable with the customization area fur-
nished with PMATE. Only 36 of the commands were im-
plemented, and not the most powerful ones.
By adding 31 bytes, we have defined all of the instant com-
mands and implemented 42. Two inactive functions are
"delete previous word" and "delete from cursor to start of
line." The other 15 are confusing variations of im-
plemented commands.
Reducing the instant command size (ICSIZ) from three to
two characters saved 36 bytes while still allowing Word-
Star compatiblity. The command table (KEYTB) was put
into numerical sequence to aid in finding entries and
making changes. Although PMATE searches the com-
mand table sequentially, the slowdown caused by not
having the most-frequently-used commands first is not
discernable.
MicroPro's WordStar has become the dominant word pro-
cessing package for microcomputers using Digital Re-
search's CP/M-80 operating system. Just as PMATE offers
text manipulation and command structures suitable for
program authors, WordStar provides output formatting
and add-on features important to document writers. Each
of these products is appropriate for similar, but different,
purposes.
People lose productivity when they switch between soft-
ware tools with essentially the same function and radical-
ly different characteristics. Either they stop thinking
about what they are doing long enough to remember how
to do it, or they enter inappropriate command sequences.
The instant command to move the cursor up a line in
PMATE will delete the line in WordStar. Many an anguish-
ed cry is heard when tired programmers forget which
editor they are using.

Michael Aaronson considered personalized keyboard
commands when he designed his text editor. The initial
$60 release of MATE in 1979 included information for rede-
fining the Instant Command Table. Version 3.21 PMATE
continues the tradition, at least in the 8-bit release.
MicroPro requires that we pay $150 for Customization
Notes before we can bend WordStar to our will. Therefore,
PMATE learned to use WordStar commands and became
WSMATE. z(continued on next page)

The original MATE (Michael Aaronson Text Editor) was
written for an audience of CP/M-80 1.4 users. In the "old"
days, programs bypassed the Basic Disk Operating Sys-
tem (BDOS) and went to the Basic Input Output System
(BIOS) to use certain control characters or to avoid echo-
ing keyboard inputs. This shortcut worked until Digital
Research implemented multi-user and multi-task
operating systems (MP/M-80 and CP/Net-80). Then pro-
grams that skipped the interrupt-management within
BDOS would either exclude other tasks or 'lock up" the
system entirely.
How, then, were programs to get raw data from the con-
sole? With the Direct Console I/O Function (6), first pro-
vided in MP/M-80 version 1 and CP/M-80 version 2. We
can write Direct I/O routines to mimic the BIOS logic for
Console Input Status, Console Character Input, and Con-
sole Character Output. Such mimicry avoids extensive
program changes. In PMATE, only the customization area
needs new code.
In fact, we can write code that determines whether to use
the BIOS or the BDOS. Such version sensitivity relies
upon the obsolete Lift Drive Head Function (12), which
was reassigned as the Return Version Number Function.
CP/M-80 1.3 or 1.4 systems ignore the function.
Software authors need to test their wares on different
computer types and configurations. Consultants often
work in a variety of information environments, and want
to use their own tools whenever possible. It is hard to look
good when every keystroke must first be researched.

When our application programs adapt to different operat-
ing environments, we are freed from keeping an assort-
ment of special versions. Maintaining multiple sets of a
program is many times more work than keeping one ver-
sion going. As our collection increases in size and com-
plexity, the probability of using any one variation de-
creases. Thus, more (effort) is less (benefit).

We put version-sensitivity into the user initialization
routine (UINIT) by inserting seven lines before the old
BIOS linkage and 17 lines after it (USERAW). The BIOS
routines are mimicked by three subroutines (RAWSTS,
RAWIN, RAWOUT) and a single-character buffer

Lifelines/The Software Magazine, Volume IV, Number 3

add $1.25 sales tax or include a duly signed resale card.

Orders paid by cash, Cashier's Check, or Money Order
will be processed without delay. Orders paid by check will
be held for four weeks to allow the check to clear. Checks
must be drawn on a U.S. bank and payable in U.S. dollars.
Available diskette formats are 8-inch, soft-sectored single-
sided, single-density CP/M standard (STD8); 5.25-inch
Lifeboat NorthStar 1.4 CP/M 48-TPI 10-sectored single-
sided single-density (N*SSSD); 5.25-inch Lifeboat North-
Star 2.2 CP/M 48-TPI 10-sectored single-sided double-
density (N*SSDD); and 5.25-inch Epic Episode 96-TPI
soft-sectored double-sided quad-density (EPIC96).
Diskettes will be 8-inch unless otherwise requested.
Send orders to Controlled Information Environments, PO
Box 457, La Mesa, CA USA 92041. Whether copied or
rekeyed, these changes will improve your MATE.

Figure 1 — WSMATE Instant Commands

This table lists all the instant commands possible in PMATE version 3.21.
Those that have been implemented mimic the WordStar command struc-
ture. Inactive entries have no command sequence indicated.

The command-abort character (ABRT) was changed to
WordStar's control-U. The Overtype Mode inserted
RETURN and TAB characters (ICRLF). The less-than sym-
bol (<) began to indicate end-of-paragraph (CRCHR).
Tilde (—) became the instruction to switch case during
command line entry (SHFCHR). The instant command
table (KEYTB) was redefined according to Figure 1.

Computing installation controls
PMATE uses data areas, or parameters, to control its
operation. This is as it should be. However, some of the
control values can be derived from other parameters.
When a program can supply data, we shouldn't have to.
For instance, the size of the screen's text area (TDPSZ) is
always three lines less than the display size (DPSZ). If our
terminal provides insert-line (VIDIL) and delete-line
(VIDDL) hardware support, we certainly want to use it for
as many lines as possible (SCRLCT). If our terminal lacks
these features, the parameter is ignored and is therefore
harmless.
To keep screen redrawing to a minimum, we want the cur-
sor to wander a half-screen from the center line in the text
display area (WANDER). This lets us move over the entire
text area without a screen refresh.
Instant commands ought to move not quite an entire text
display area. When moving down through text a screen at
a time, the last line in this screen is the first line of the next.
This provides both continuity and efficiency. Therefore,
we subtract 2 from the text size (TDPSZ) to derive the
scroll size (SCRLNS).
When text extends beyond the screen, the display per-
forms a lateral shift. That is, when we move the text cursor
past the last column (defined by CHRLN), the text "win-
dow" slides to the right. The width of this shift, in
characters, is the shift count (SHFTCT). The first version
of MATE offered a shift count equal to half the width of the
screen as a good compromise between continuity and
speed. That's the value used here.
We make the text file page separator character (PAGSEP)
zero. This prevents automatic insertion of the separator
character into our text files. It also causes the program to
count lines to determine when a page has been read or
written, rather than scanning for the separator character.

Defining the text file page size (PAGSZ) larger than the
available computer memory brings two benefits. The pro-
gram automatically loads as much of the file as possible
into memory, relying on the disk scrolling to manage the
remainder. Global searches look at the entire file; they no
longer terminate when reaching the end of the memory-
resident portion of the file.

Such a deal

Command

tt

tH
tA
tJ
tF

Number Action

Move to beginning/end of in-memory text
Move to end of in-memory text
Move cursor backward one text-character
Move cursor backward one text-word
Move cursor forward one text-character
Move cursor forward one text-word
Move cursor up one text-line
Move cursor up multiple text-lines
Move cursor down one text-line
Move cursor down multiple text-lines
Delete forward one text-character
Delete forward from cursor to end of line
Begin Insert Mode
Edit Command Buffer
Abort
Shift case
Reformat and redraw display
Tag current cursor position
Delete forward one text-word
Delete backward one text-word
Recover previous erasure/deletion
Enter Command Mode
Enter Overtype Mode
Insert New Line
Move cursor backward one screen position
Move cursor forward one screen position
Move cursor up one position (mixed)
Move cursor down one position (mixed)
Move text block into buffer
Get text block from buffer
Move cursor up one screen position
Move cursor down one screen position
Move to beginning of in-memory text
Move cursor backward one position (mixed)
Move cursor forward one position (mixed)
Move to beginning of file
Move to end of file
Move to beginning/end of file
Change case of one text-character forward
Swap two previous text-characters
Move cursor to end of text-line
Move cursor to beginning of text-line(D

o
o

, N

a
)u

i
w

ro
-‘

O
(D

O
o

N
a

)U
iA

W
f\

)-
k

O
(D

o
o

a

)y
iA

W
\)

-
k

O
(D

o
o

;:
J

a
)y

iA
Q

M
-

i
o

c
0

o
o

tG
tY
to IV
to to
tu
to tA
tB
tK tB

C
L O

O

Z

C
O

 Q

tc
tR

tK tV
tK tC
tE
tx

Since the idea behind all these improvements is to make
PMATE easier to use, it follows that we can avoid retyping
the 500 lines of 8080 assembler code listed in Figure 2.
Controlled Information Environments will ship a diskette
containing the WSMATE Instant Command summary
and the unassembled WSMATE Customization Area via
U.S. Mail upon receipt of $25. California residents must

to tR
to tc

t\
to tx
to tD
to ts

4 Lifelines/The Software Magazine, August 1983

Move cursor up one text-screen
Move cursor down one text-screen
Move cursor up multiple screen positions
Move cursor down multiple screen positions
Move cursor up multiple positions (mixed)
Move cursor down multiple positions (mixed)
Enter Insert/Overtype Mode
Delete backward to beginning of text-line
Set auto-indent to current column
Exchange tag and cursor
Increment auto-indent 4 columns
Decrement auto-indent 4 columns
Scroll up
Scroll down
Scroll backward
Scroll forward
Repeat
User Macro 1
User Macro 2

; JUMP VECTORS AND USER VARIABLES
UINITL: JMP UINIT ; USER INITIIALIZATION
UEXIT: RET ; USER EXIT ROUTINE

NOP
NOP

Cl: JMP $-$; CONSOLE INPUT
; VECTOR

CSTS: JMP $-$; CONSOLE STATUS
; VECTOR

COUT: JMP $—$; CONSOLE OUTPUT
; VECTOR

LO: JMP $-$; LIST VECTOR
LSTS: DB 0,0,0 ; LIST STATUS VECTOR
MONTR: RET ; MONITOR VECTOR

NOP
NOP

KEYTAB: DW KEYTB ; POINTER TO INSTANT
; COMMAND KEY-
; STROKE TABLE

ICSIZ: DB 2 ; SIZE OF SLOT IN
; TABLE (SWF)

INITMD: DB 0 ; INITIAL MODE —
; COMMAND (0),
; INSERT (1),
; OVERTYPE (2)

DB 0,0 ; RESERVED

UCOM: DW USRCOM , POINTER TO USER
; COMMAND EXE-
; CUTED BEFORE
; INPUT OF NEXT
; COMMAND

; DISPLAY PARAMETERS - $” DERIVED
; BY LOGIC IN UNIT

TDPSZ: DB $—$; HOW MANY LINES IN
; TEXT SECTION OF
; DISPLAY (SWF)

DPSZ: DB 24 ; HOW MANY LINES IN
; VIDEO DISPLAY

CHRLN: DB 80 ; HOW MANY
; CHARACTERS IN
; EACH LINE

SHFTCT: DB $—$; SIZE OF SHIFT WHEN
; CURSOR MOVES OFF
; SCREEN (SWF)

SCRLCT: DB $—$; MAXIMUM LINES TO
; SCROLL VIA HARD-
; WAREINSERT-
; AND DELETE-LINE
; (SWF)

WANDER: DB $—$; HOW MANY LINES
; CURSOR CAN
; WANDER FROM
; CENTER (SWF)

CONTXT: DB 3 ; HOW MANY LINES
; ALWAYS REDRAWN IN
; FOREGROUND

NOLSTC: DB TRUE ; TRUE IF LAST
; CHARACTER OF
; DISPLAY MUST BE
; SUPPRESSED

DOWN: DB FALSE ; TRUE IF DISPLAY
; MUST DRAW FROM
; TOP TO BOTTOM

EVRYLN: DB FALSE ; TRUE TO DISPLAY
; CURSOR BEFORE
; DRAWING EACH LINE

BLNKCT: DB 25 ; CURSOR BLINK
; COUNT

Figure 2 — WSMATE Customization Area 8080 Assembly Listing

WSMATE I/O PATCH
05/31/83 SWF

; CUSTOMIZATION FOR PMATE EDITOR, VERSION 3.21
; TO USE THIS:
; ASM WSMATE.AAA
; DDT PMATE.COM
; IWSMATE.HEX
; R
; G0000
; SAVE84WSMATE.COM

; ALTERATION HISTORY:
; SWF = STEVEN FISHER CDP, P O BOX 457, LA MESA, CA 92041
; 10/05/82 SWF — IMMEDIATE-MODE KEYS NOW LIKE MICRO-
; PRO’S WORD-STAR
; 10/11/82 SWF — INITIALIZATION SETS DISPLAY AND SCROLL
; PARAMETERS
; 10/12/82 SWF — USES RAW-IO FOR ALL MP/M & CP/M LATER
; THAN 1.4
; 11/03/82 SWF — REDUCED ICSIZ FOR COMMAND TABLE &
; ADDED ALL DEFINED COMMANDS
; 12/29/82 SWF — INCREASED PAGSZ TO READ ENTIRE TEXT FILE
; AT START
; 01/01/83 SWF — DEFINED VIDEO TO CO-SUPPORT SOROC IQ-120
; &IMSAIVIO-C
; 05/31/83 SWF - REMOVED CONTXT FROM UINIT INITIALIZATION

FALSE EQU 0 ; FOR CONDITIONS
TRUE EQU OFFH ; FOR CONDITIONS
CTL EQU 40H ; FOR EQUATES

MEMMAP EQU FALSE ; TRUE IF MEMORY-
; MAPPED VIDEO

MACSZ EQU 200 ; SIZE OF PERMANENT
; MACRO AREA

BIOSPT EQU 0001H ; POINTS TO WARM
; BOOT BIOS VECTOR
; (SWF)

SYSTEM EQU 0005H ; ENTRY POINT TO
; SYSTEM (SWF)

RAWIO EQU 06H ; SYSTEM FUNCTION
; TO USE RAW IO (SWF)

VERSNO EQU 0CH ; SYSTEM FUNCTION
; TO GET VERSION
; (SWF)

ORG 109H
(continued on next page)

5Lifelines/The Software Magazine, Volume IV, Number 3

IGNRIC: DB
; - 0 FOR NO BLINK

3 ; IGNORE INSTANT
; COMMANDS IF
; DEEPER THAN THIS
; IN BUFFER

MMAP: DB MEMMAP ; TRUE IF MEMORY-
; MAPPED DISPLAY

VRAMO: DW 0F000H BEGINNING OF
; VIDEO RAM

LSPAC:

DSPCUR:

CLRCUR:

DSPCHR:

VIDCLS:

VIDCLL:

DW 80H ;LINE SPACE — LINE
; OFFSET IN VIDEO
; MEMORY
; ROUTINE TO DISPLAY
; CURSOR AT MEMORY
; POINTED TO BY HL

MOV A,M
ORI 80H
MOV M,A
RET
DS 16 ; 21 BYTES TOTAL

; ROUTINE TO CLEAR
; CURSOR FROM
; MEMORY POINTED
; TO BY HL

MOV A,M
ANI 7FH
MOV M,A
RET
DS 16 ; 21 BYTES TOTAL

; ROUTINE TO STORE
; CHAR IN REG A IN
; VIDEO MEMORY
; POINTED TO BY DE

STAX D
RET
DS 19 ; 21 BYTES TOTAL
ENDIF ; END OF CONDITIONAL

; ASSEMBLY IF MEMAP
IF NOT MEMMAP ; FOR SERIAL

; TERMINAL
; VIDEO CODES — SEQUENCES END IN 0,
; THEN NEXT BYTE IS HOW MANY
; MILLISECONDS TO DELAY AFTER
; SENDING SEQUENCE TO TERMINAL
; SEQUENCE THAT CLEARS THE SCREEN
; AFTER HOMING CURSOR

DB 1BH,’ * ’,1AH
DB 10H,0,0
DB 0,0,0

; SEQUENCE THAT CLEARS FROM
; CURSOR TO END OF LINE

DB 1BH,’T’,15H
DB 0,0,0
DB 0,0,0

; CURSOR ADDRESSING
VIDASC: DB FALSE ; ASCII FLAG — TRUE

; FOR ASCII, FALSE IF
; BINARY

VIDXY: DB FALSE ; XY FLAG — FALSE IF
; Y (COL) FIRST, TRUE
; IF X (ROW)

VIDOF1: DB ’ ’ ; OFFSET OF FIRST
; COORDINATE

VIDOF2:

VIDCUL:

DB

DB

’ ’ ; OFFSET OF SECOND
; COORDINATE

; LEAD IN OF CURSOR POSITIONING
27.’= ’,0

DB
DB

0,0,0
0,0,0

VIDCUM:

VIDCUE:

DB
DB
DB

DB
DB
DB

; MIDDLE OF CURSOR POSITIONING
0,0,0
0,0,0
0,0,0
; END OF CURSOR POSITIONING
0,0,0
0,0,0
0,0,0

VIDIL:

VIDDL:

; HARDWARE INSERT- AND DELETE-LINE
; 15 MILLISECOND DELAY TYPICAL)

; SEQUENCE THAT INSERTS LINE —
; ENDING, THEN MSEC DELAY

DB 0,0,0
DB 0,0,0
DB 0,0,0

; SEQUENCE THAT DELETES LINE —
; END IN 0, THEN MSEC DELAY

DB 0,0,0
DB 0,0,0
DB 0,0,0

ENDIF ; ENDOFCONDI-
; TIONAL ASSEMBLY
; IF NOT MEMAP

DB 0 ; RESERVED

DELAY:

ABRT:

ICRFL:

DB

DB

DB

100

’U-CTL

TRUE

; DELAY TIME FOR
; QD COMMAND
; ABORT CHARACTER
; (SWF)
; TRUE IF<CR> AND
; <HT> ARE INSERTED
; IN OVERTYPE (SWF)

; MEMORY PARAMETERS DERIVED
; BY LOGIC IN UINIT

CORBEG: DW EDEND + MACSZ+1
; FIRST AVAILABLE
; CORE LOCATION

CORMX: DW $-$; LAST AVAILABLE
; CORE LOCATION
; (SWF)

GBGSZ: DW -1000 ‘ ; NEGATIVE
; MINIMUM SIZE OF
; GARBAGE AREA

TXTEND: DW $-$; LAST LOCATION
; AVAILABLE FOR TEXT,
; REST
; IS RESERVED FOR
; GARBAGE (SWF)

MACBEG: DW EDEND ; FIRST AVAILABLE
; LOCATION FOR
; PERMANENT MACROS

MACEND: DW EDEND + MACSZ ; LAST AVAILABLE
; LOCATION FOR
; PERMANENT MACROS

; THE FOLLOWING VARIABLES CAN BE SET
; BY THE Q COMMANDS

UVAR0: DW 0 ; USER DEFINABLE
; VARIABLES

UVAR1: DW 0
UVAR2: DW 0
UVAR3: DW 0
UVAR4: DW 0
UVAR5: DW 0
UVAR6: DW 0
UVAR7: DW 0

Lifelines/The Software Magazine, August 1983

UVAR8: DW 0
UVAR9: DW 0

SHFCHR: DB hJ ; UPPER OR LOWER
; CASE SHIFT
; CHARACTER (SWF)

CNTCHR: DB T ; CHARACTER
; DISPLAYED FOR CONTROL
; CHARACTER

PAGSZ: DW 65000 ; LINES PER PAGE
; (SWF)

PAGSEP: DB 0 ; PAGE SEPARATOR
; (SWF)

SCRLNS: DW $-$; LINES TO SCROLL
; PER INSTANT
; COMMAND (SWF)

BKUFL: DB TRUE ; TRUE IF BACKUPS
; ARE TO BE MADE

XMAX: DB 250 ; MAXIMUM ALLOWED
; X CURSOR POSITION

CRCHR: DB ; CHARACTER
; DISPLAYED FOR
; PARAGRAPH END
; (SWF)

GLBLSZ: DW $-$; SIZE OF BLOCK FOR
; DISK SCROLL
; WRITES (SWF)

GLROOM: DW $-$; ROOM LEFT AFTER
; GLOBAL DISK
; OPERATIONS (SWF)

GLINSZ: DW 1000 ; SIZE OF BLOCK
; WRITTEN TO MAKE
; ROOM FOR INSERT

ORG 5239H

SHLD GLBLSZ ; AND USE SAME
; AMOUNT FOR
; SCROLL BLOCK SIZE

; SET ROW-ORIENTED DISPLAY PARAMETERS (SWF)
LDA DPSZ ; GET DISPLAY SIZE
SUI 3 ; REMOVE SIZE OF

; COMMAND DISPLAY
STA TDPSZ ; SET TEXT DISPLAY

; SIZE
STA SCRLCT ; USE INSERT/DELETE

; TO SCROLL ALL
ANI OFEH ; FORCE IT TO AN

; EVEN NUMBER
RAR ; DIVIDE BY 2
STA WANDER ; CURSOR CAN MOVE

; ALL OVER SCREEN
LDA TDPSZ ; GET TEXT DISPLAY

; SIZE
SUI 2 ; KEEP CONTINUITY

; IN A SCROLL
STA SCRLNS ; A SCROLL IS

; ALMOST ENTIRE
; TEXT SCREEN

; SET COLUMN-ORIENTED DISPLAY
; PARAMETERS (SWF)
LDA CHRLN ; GET DISPLAY WIDTH
ANI OFEH ; FORCE IT TO AN

; EVEN NUMBER
RAR ; DIV IDE BY 2
STA SHFTCT ; HOW FAR TO SHIFT

; WHEN MOVING OFF
; SCREEN

; LINK TO CONSOLE AND PRINTER
LXI D,0 ; INITIALIZE IN CASE

; IT IS 1.4 CP/M (SWF)
LXI H,0 ; DITTO (SWF)
MVI C.VERSNO
CALL SYSTEM ; GET VERSION

; NUMBER (SWF)
MOV H,A ; SEE IF HL = 0 (SWF)
ORA L ; OIF CP/M 1.4 (SWF)
JNZ USERAW ; USE RAW I/O FOR

; OTHER THAN CP/M
; 1.4 (SWF)

LHLD BIOSPT ; POINTER TO WARM
; BOOT VECTOR

LXI D,3
DAD D ; CONSOLE STATUS

; VECTOR
SHLD CSTS + 1
DAD D
SHLD CI + 1 ; CONSOLE IN VECTOR
DAD D
SHLD COUT+1 ; CONSOLE OUT

; VECTOR
DAD D
SHLD LO + 1 ; LIST OUTPUT

; VECTOR
RET

USERAW: ; THIS LINKS TO RAWIO CONSOLE I/O AND
; LIST STATUS CHECK (SWF)
; IT WORKS FOR CP/M 2.X OR LATER,
; AND MP/M 1.X OR LATER (SWF)

LXI H.RAWSTS
SHLD CSTS + 1
LXI H,RAWIN
SHLD CI + 1
LXI H.RAWOUT

(continued on next page)
7

USER INITIALIZATION

UINIT:

; SET MEMORY-USAGE PARAMETERS
LHLD 06H ; POINTER TO

DCX H
; BEGINNING OF BDOS
; POINTS TO LAST

SHLD CORMX

; POSITION IN
; PROGRAM AREA
; LAST AVAILABLE

XCHG
LHLD GBGSZ

: CORE LOCATION

; NEGATIVE OF SIZE

DAD D

; ALLOWED FOR
; GARBAGE AREA

SHLD TXTEND
LHLD CORBEG
LDA TXTEND +1
SUB H
RAR ; DIVIDE BY 2
ANA A ; CLEAR CARRY
RAR ; DIVIDE BY 2

ANA A
; AGAIN (SWF)
; CLEAR CARRY (SWF)

RAR ; DIVIDE BY 2 AGAIN
MOV H,A
MVI L,0
SHLD GLROOM ; LEAVE 1/8 OF THAT

; ROOM FREE FOR
; GLOBALS

Lifelines/The Software Magazine, Volume IV, Number 3

SHLD COUT+1
LHLD BIOSPT ; WARM-BOOT VECTOR
XCHG
LXI H,12 ; OFFSET TO LIST

DAD D
; OUTPUT

SHLD LO + 1
MVI A.0C3H ; PLACE JUMP

STA LSTS

; STATEMENT IN LIST
; STATUS

LXI H.52 ; OFFSET TO LIST

DAD D
; STATUS

SHLD LSTS + 1
RET

INITIAL COMMAND

USRCOM: ; INITIALLY EXECUTED USER COMMAND
DB 0

INSTANT COMMAND TABLE

EACH ENTRY CONSISTS OF COMMAND
NUMBER AND INPUT PATTERN
SIZE OF INPUT PATTERN DEFINED BY
VARIABLE ICSIZ (2) (SWF)
THIS VERSION SIMILAR TO MICRO-PRO’S
WORD-STAR (SWF)

KEYTB:

RAWIO CONSOLE LOGIC

DB 0+128 ; - MOVE TO MEMORY
; BEGINNING/END

DB ’ t -CTL
DB 0

RAWCHR: DB 0 ; PENDING INPUT
; CHARACTER (SWF)

RAWSTS: ; CHECK FOR PENDING CONSOLE
; INPUT (SWF)

LDA RAWCHR
ORA A ; STILL-PENDING

; INPUT?
JNZ RAWSET ; IF SO THEN SAY SO
MVI C.RAWIO ; LOOK AT CONSOLE
MVI E.TRUE ; GET STATUS OR

; INPUT
CALL SYSTEM
STA RAWCHR ; SAVE CHARACTER

; OR STATUS
ORA A ; WAS THERE

; ANYTHING?
RZ ; ALL DONE IF NOT

RAWSET: ; SET ALL ACCUMULATOR BITS TO SHOW
; THERE IS INPUT

SUB
CMA
RET

A

RAWIN: ; WAIT FOR AN INPUT FROM THE
; CONSOLE (SWF)

CALL RAWSTS
JZ RAWIN ; TRY AGAIN IF

; NO INPUT
LXI H,RAWCHR
MOV A,M ; GET PENDING

; CHARACTER
MVI
RET

M,FALSE ; CLEAR BUFFER

RAWOUT: ; SEND A CHARACTER TO THE
; CONSOLE (SWF)

MOV E,C ; BIOS USES C,
; BDOSUSESE

MVI C.RAWIO
MVI A,TRUE ; ARE WE TRYING TO

; SENDOFFH?
CMP E ; SUPPRESS OFFH AS

; IT CAUSES INPUT
CNZ

RET

SYSTEM ; OTHERWISE SEND
; TO CONSOLE

DB 1 + 128 ; - MOVE TO MEMORY
; END

DB 0
DB 0

DB 2+128 ; - MOVE LEFT
DB ’H: CTL
DB 0

DB 3+128 ; -MOVE LEFT ONE
; WORD

DB 7VCTL
DB 0

DB 4+128 ; -MOVE RIGHT
DB ’J-CTL
DB 0

DB 5 + 128 ; - MOVE RIGHT ONE
; WORD

DB ’RCTL
DB 0

DB 6 + 128 ; -MOVE UP ONE LINE
DB 0
DB 0

DB 7+128 ; - MOVE UP MULTIPLE
; LINES

DB 0
DB 0

DB 8 + 128 ; - MOVE DOWN ONE
; LINE

DB 0
DB 0

DB 9+128 ; - MOVE DOWN
; MULTIPLE LINES

DB 0
DB 0
DB 10 + 128 ; -DELETE

; CHARACTER
DB ’GiCTL
DB 0

DB 11 + 128 ; -K ILL LINE
DB ’Y CTL
DB 0

DB 12 + 128 ; -GO TO INSERT
; MODE

Lifelines/Tne Software Magazine, August 1983

DB ’OiCTL
DB ’V-CTL

DB 13 + 128 ; -EDIT COMMAND
DB ’O1CTL
DB ’OTOTL

DB 14+128 ; -ABORT
DB ’U-CTL
DB 0

DB 15 + 128 ; -SHIFT CASE
DB ’OTOTL
DB ’ATOTL

DB 16+128 ; -REFORMAT AND
; REDRAW

DB ’B-CTL
DB 0

DB 17+128 ; -TAG
DB ’K-CTL
DB ’B-CTL

DB 18 + 128 ; -DELETE WORD
; FORWARD

DB ’TTOTL
DB 0

DB 19 + 128 ; -DELETE WORD
; BACKWARD

DB 0
DB 0

DB 20 + 128 ; -POP GARBAGE
; STACK

DB ’P-CTL
DB 0

DB 21 + 128 ; -GO TO COMMAND
; MODE

DB ’O: CTL
DB ’C-CTL

DB 22+128 ; -GO TO OVERTYPE
; MODE

DB ’O-CTL
DB ’RTOTL

DB 23+128 ; - INSERT LINE
DB ’NiCTL
DB 0
DB 24+128 ; -MOVE LEFT

; GEOMETRIC
DB ’SiCTL
DB 0

DB 25+128 ; -MOVE RIGHT
; GEOMETRIC

DB ’D-CTL
DB 0

DB 26 + 128 ; -MOVE UP MIXED
DB 0
DB 0

DB 27+128 ; - MOVE DOWN MIXED
DB 0
DB 0

DB 28 + 128 ; -MOVE BLOCK
DB ’K: CTL
DB ’VTOTL

DB 29 + 128 ; -GET BLOCK
DB ’K-CTL
DB ’CTOTL

DB 30 + 128 ; - MOVE UP ONE LINE
; GEOMETRIC

DB ’E-CTL
DB 0

DB 31 + 128 ; -MOVE DOWN ONE
; LINE GEOMETRIC

DB ’X: CTL
DB 0

DB 32 + 128 ; - MOVE TO MEMORY
; BEGINNING

DB 0
DB 0

DB 33 + 128 ; - MOVE LEFT MIXED
DB 0
DB 0

DB 34+128 ; - MOVE RIGHT MIXED
DB 0
DB 0

DB 35 + 128 ; - MOVE TO FILE
; BEGINNING

DB ’Q: CTL
DB ’RiCTL

DB 36+128 ; - MOVE TO FILE END
DB ’QTOTL
DB ’C-CTL

DB 37+128 ; -MOVE TO FILE
; BEGINNING/END

DB 0
DB 0

DB 38+128 ; -CHANGE CASE OF
; CHAR AT CURSOR

DB ’\-CTL
DB 0

DB 39 + 128 ; -REVERSE LAST
; TWO CHARS

DB ’O-CTL
DB ’X-CTL

DB 40+128 ; -MOVE TO END
; OF LINE

DB ’QiCTL
DB ’DTOTL

DB 41 + 128 ; - MOVE TO BEGIN-
; NINGOFLINE

DB ’Q: CTL
DB ’S: CTL

DB 42+128 ; -MOVE UP ONE
; SCREENFUL

DB ’QiCTL
DB ’W-CTL

DB 43+128 ; - MOVE DOWN ONE
; SCREENFUL

DB ’QiCTL
DB ’ZTOTL

DB 44+128 ; - MOVE UP MULTIPLE
; LINES GEOMETRIC

DB ’RiCTL
DB 0

DB 45 + 128 ; - MOVE DOWN
; MULTIPLE LINES
; GEOMETRIC

DB ’C: CTL
DB 0

(continued on next page)
9Lifelines/The Software Magazine, Volume IV, Number 3

DB 46+128 ; - MOVE UP MULTIPLE
; LINES MIXED

DB 0
DB 0

DB 47+128 ; - MOVE DOWN
; MULTIPLE LINES
; MIXED

DB 0
DB 0

DB 48 + 128 ; -TOGGLE BETWEEN
; INSERT AND
; OVERTYPE

DB ’V-CTL
DB 0

DB 49 + 128 ; - DELETE TO BEGIN-
; N INGOFL INE

DB 0
DB 0

DB 50+128 ; -SET AUTOTAB
; LEVEL TO CURRENT
; POSITION

DB ’O CTL
DB TCTL

DB 51 + 128 ; -EXCHANGE TAG
; AND CURSOR

DB ’K CTL
DB ’KiCTL

DB 52 + 128 ; - INCREMENT
: AUTOTAB LEVEL

DB ’O CTL
DB ’D-CTL

DB 53+128 ; -DECREMENT
: AUTOTAB LEVEL

DB ’OLCTL
DB ’S : CTL

DB 54+128 ; -SCROLL UP
DB ’Z CTL
DB 0

DB 55+128 ; -SCROLL DOWN
DB ’W-CTL
DB 0

DB 56+128 ; -SCROLL LEFT
DB 0
DB 0

DB 57+128 ; -SCROLL RIGHT
DB 0
DB 0

DB 63 + 128 ; - REPEAT
DB ’L-CTL
DB 0

DB 32 + 128 + T ; USER COMMAND - . 1
DB ’Q-CTL
DB ’1’

DB 32 + 128 + ’2’ ; USER COMMAND - . 2
DB ’Q-CTL
DB ’2’

DB OFFH ; END OF TABLE

; END OF EDITOR
EDEND: DB 0

END g

STOK SOFTWARE, INC.
Humanizing the Computer

Back Rest
Hard Disk

Backup,
Restore

and more!
• Incremental and Full backup.
• True copying of random files.
• Split large files if necessary.
• Migrate or delete selected files. $99.95
• Automatically restore bad files.
• Print Management reports.
• Requires CP/M 2.2, CP/M 3 or MP/M.

'PROF EASY
WE LOST THE
MASTER FILE'

BACKS UP ANY HARD DISK TO
FLOPPY DISKS AND ALLOWS

SIMPLE RESTORATION LATER /

>TM

Put your knowledge of your office environment into your computer so
that your personnel will be properly guided in your absence.

STOK PILOT is a control language that allows easy development of a
menu driven environment as well as an on line instructional utility for any
CP/M or MP/M application. It can guide the user through an entire
process without requiring the user to enter cumbersome system com-
mands, hence making the system transparent to the user.

STOK PILOT can chain to any “COM” file program, or series of
“COM” files, and regain control when the last program ends. This, and
other unique features make it easy to design complete turnkey systems.

Disk and manual - $129.95. Manual alone - $14.95.

VISA MasterCard THE
RANDOM in
HOUSE

SuperDO & SuperSUB - $29.00
SuperDO allows the CP/M operator to type a string of commands that will

execute one at a time. So you can walk away for a while and let your
computer do its thing. Example:

A> DO ASM PROG1; LOAD PROG 1; ASM PROG2; LOAD PROG2;DIR
SuperSUB is an enhanced SUBMIT command that will run on any stan-

dard CP/M 2.2 system. It runs faster than SUBMIT because it buffers the
commands in memory.
Random House and the House design are TM of Random House, Inc. CP/M - MP/M are
TM of Digital Research, Inc Dealer inqui r ies invi ted.

ELECTRONIC
THESAURUS®

Stok Software Inc.

17 West 17th St.
New York, NY
10011
212/243-1444 $140.00

Lifelines/The Software Magazine, August 198310

Feature PL/I From The Too Down
—Getting It Up—Continued

By Bruce H. Hunter
This is a continuation of last month's (June 1983) article, all
part of a continuing series of articles. The material for
these articles has been taken from my book "PL/I From
the Top Down" and rewritten for Lifelines in article form.
The purpose of Chapter One is to introduce some elemen-
tary concepts of PL/I designed to give the reader enough
basic knowledge to get PL/I "up and running." By "up and
running" I mean learning enough to write elementary
programs and be able to link and compile them at home.
In most other languages this would not be difficult. PL/I is
another story. It is a very sophisticated language, and get-
ting this language "up" is a strenuous task, especially if
you are relatively new to programming languages. The
power and versatility of PL/I are going to astound those of
you who come from teaching languages like BASIC and
Pascal. Whole new programming worlds will open up for
you, but it's going to take some work! So, let's get to it.
One of the advantages of writing an informal text is the

casual way new material can be introduced. I like to use a
spiral approach in teaching computer languages, espe-
cially complex ones like PL/I. We will cover only a little bit
of each concept initially so you can get an overview of the
language. As we go along we will go into more and more
detail. The compiler used for the writing of this book is
Digital Research's PL/I-80, a subset of PL/I Subset G.

PL/I
FROM THE TOP DOWN

By Bruce H. Hunter
(c) 1983

All Rights Reserved

CHAPTER ONE - GETTING IT UP (continued)

ted input is just as flexible. The type of data can be pre-
determined and the length of the input data can be easily
controlled. Edited or formatted I/O is a carry-over from
first generation computers, card readers and punches.
This was the time when the large mainframes depended
on punched cards to input data. Card fields have to be
very exacting. The output fields are predetermined within
the program by the programmer, and the input formats
must be just as exact to read the card. It's interesting to
note that in the United States card reading came to be
used extensively, which resulted in our early languages
becoming "card-oriented" and thus rigidly formatted. An
example of a language developed in this era is FORTRAN,
which indeed is a formatted language. European lan-
guages did not develop into heavily formatted languages
because they relied on punched tape for their I/O. Thus,
languages like ALGOL were developed with less format-
ting. But to continue my point, we all should give a quick
thanks to those card reading days, in spite of all the jokes
and sneers at the "do not fold, spindle or mutilate" era,
because one of the benefits of that period is formatted I/O.
Formatted I/O has many useful purposes. In the last arti-
cle there was a simple program to get a name and return it
to the CRT. It uses unformatted or list I/O:

instring:
proc options (main):

%replace
TRUE by Tb,
CLEAR by 'tL';

del
name char (128) var;

put list (CLEAR);
do while (TRUE);

put skip (2) list ('enter your name:');
get list (name);
put list ('your name is 'name);
end; /*do while*/

end instring;
To briefly reiterate and also enhance where we left off, let's
examine possible input for this program. When dealing
with names being input, you are obviously going to be
dealing with more than one "word." By that I mean that
an entire name has spaces between the first, middle and
last names such as this one:

William P. Hogan

In the above program there are already problems with this
kind of input when dealing with "list I/O." Let's define a
few terms. The first, middle and last names are called
"tokens." The spaces between the tokens are called "de-
limiters." The important fact to concentrate on here is that
spaces are string delimiters in PL/I. If we entered 'William
P. Hogan' as input for the above program, the first token

Edited I /O
In the first installment of this article we were just begin-
ning to cover I/O (input /output) in PL/I. Input/output in
PL/I has<the advantage of being offered two ways, unfor-
matted and formatted. I often call unformatted I/O "list
I/O" because it is the I/O being used by "get list" and "put
list" program statements. Unformatted or list I/O comes in
and goes out in a relatively undisciplined manner. The
programmer exercises very little control over where the
output goes on a line. Input is nearly as uncontrollable —
whatever the individual at the console types in is what the
program gets. Edited or formatted I/O is quite another
matter. Output can be controlled by column and line. Nu-
meric output can be controlled for length, notation, and
decimal length. Outputs can be controlled for either right
or left justification. Any number of lines can be skipped
and any number of parameters can be repeated. Format-

(continued on next page)
11Lifelines/The Software Magazine, Volume IV, Number 3

Let's briefly compare list I/O and edited I/O and talk about
a few advantages of each. List I/O is easier to write
because you don't have to specify the length of the
variable or constant being output (or input). When deal-
ing with numeric data, list I/O is usually adequate, par-
ticularly if the numbers are within reasonable bounds.
One specific advantage of list output is when you have to
output something like this:

put skip list ('The amount is $' amount);
Whether the amount is $1.98 or $1,000,000.00 the output
string will be contiguous:

The amount is $1.98
or

The amount is $1000000.00
Compare that with an edited I/O version of the same
statement:

put skip edit (The amount is $', amount) (a, f9.2);
This will output

The amount is $1000000.00

which is fine, but a smaller amount like $1.98 doesn't
comes out very well because the field has to be specified,
in this case nine characters in length:

The amount is $ 1.98
Some advantages of edited I/O are justification and
precise columnar control. Edited output guarantees left
justification and thus guarantees that all the decimal
points will line up when numbers are expected to be in
columns. When dealing with numbers, there are some
specific advantages to limiting the input field. The follow-
ing statement limits the input to a six digit number with
no more than three decimal places:

get edit (float number) (f(6,3));
The next program statement will output a 6 place decimal
exponentiated or scientific number:
put edit (exponent number) (e(6.3));
As we saw in our program example, there are some advan-
tages in edited I/O when dealing with strings. The next
program statement will limit the string input to no more
than 32 characters:
get edit (name) (a(32));
Why would you want to limit the string input? There are
many times when the parameters of the program will limit
the number of characters that can be utilized in spite of the
length of the input field — for example the output field of
a report form or the field length within a file is usually
restricted as to its length. A formatted input, or for that
matter a formatted output, restricts the number of char-
acters going to the field. The program will therefore be
viable in spite of the potential for truncation. So much for
comparisons. Input/output will be dealt with extensively
throughout the article series, so let's go on.
Potential bugs with 'GET EDIT'
statements
Let's stop momentarily and take a look at what we've
learned. Trying to explain PL/I is like trying to explain an

Lifelines/The Software Magazine, August 1983

('William') is going to be read as a separate string. The
other two tokens will also each be read as separate strings
—'P.' and 'Hogan'. To get the entire name entered without
string delimiters, we can use the underscore character,
like this:

William P. Hogan

This eliminates the spaces that PL/I recognizes as string
delimiters, and the entire name will be entered. For this
sort of program, however, asking the operator to use
underscore characters instead of spaces is obviously not
suitable. Therefore, 'list I/O' will just not do for this par-
ticular program. Other languages have I/O restrictions.
ISO Pascal, for example, has many restrictions on input.
Pascal has a good excuse because it was created to be a
teaching language, not a commercial applications lan-
guage. Because PL/I is a commercial applications lan-
guage, shortcomings in I/O cannot be tolerated. That's
why PL/I has provisions for another kind of I/O, and the
way around our dilemma is PL/I's edited I/O.
With 'edited I/O' there is no problem. We can take out this
program statement

'get list (name);'
and substitute this one:

'get edit (name) (a);'

The '(a)' is used exclusively with edited I/O, and it
specifies alpha data. The 'edit' indicates edited I/O. Now
perhaps the significance of the program declaration
makes more sense:
name char (128) var;

The 'name' is the string, 'char' specifies type character,
'128' is the maximum number of characters and 'vaf
means "of varying length." To sum up, this statement tells
the compiler that the 'name' variable will be a string of
anywhere up to 128 alpha characters long:

edit instring:
proc options (main)

%replace
TRUE by Tb,
CLEAR by 'IL';

del
name char (128) var;/*the string can be this long*/

put list (CLEAR);
do while (TRUE);

put skip (2) list ('enter your name :');
get edit (name) (a); substitution is here*/
put list ('your name is 'name);
end; /*do while*/

end edit instring;

The substituted line 'get edit (name) (a);' tells the com-
piler to expect a string of up to 128 characters (the default
length is 256 characters) which will be delimited by a car-
riage return.
So now when the name "William P. Hogan" is entered, it
will be treated and stored as a single string. 'Edited I/O
does not recognize anything except a carriage return as a
delimiter. The advantage of all this is obvious. Now the
language can act on a "what you see is what you get"
basis.

insurance policy — for every statement you make, there
are often specific conditions and qualifications you have
to point out as well. I'll capitalize this one. THE 'GET
EDIT' STATEMENT READS EVERYTHING UP TO BUT
NOT INCLUDING THE CARRIAGE RETURN. This fact
is stated in Digital's language manual, but it might not
register at first. Look at the following program segment:

put list ('enter first name');
get edit (name) (a);
put list ('enter second name');
get list (name2) (a);

This program segment operates as follows. The system
reads 'name' and takes it into its buffer, but it leaves the
carriage return to hang around and get in trouble. The
next 'get edit' statement takes the itinerant carriage return
and accepts it as a null string, putting nothing into its
storage location. The result is that the program appears to
skip over the second request for information. If this
sounds like a pain in the neck, it is!
How to keep it from happening? Think of it as a garbage
collection problem. Look at the program segment now:

put list ('enter first name');
get edit (name) (a);
get skip;
put list ('enter second name');
get edit (name2) (a);
get skip;

The 'get skip' does the garbage collection, picking up the
stray ASCII Odh (carriage return) and "throwing it away."
Don't forget to add the last 'get skip', or the last carriage
return will lurk around to haunt you. As a bonus, the 'get
skip' can be used to get the program to stop execution.
This sometimes comes in handy, especially involving in-
put. Because the 'get skip' requires a carriage return to
satisfy the statement, program execution cannot continue
until a carriage return is received. So, you can do things
like this:

put skip list ('press enter to continue ');
get skip;

A word of WARNING. The 'get skip' is not a "cure-all"
because the stray carriage return is not entirely predict-
able. Sometimes it will not fly around loose and other
times it will take two 'get skips' to trap the loose carriage
return:

get (2) skip;
This may be corrected in future compilers. I would recom-
mend that you either use the 'get skip' method and be
prepared to remove those that overkill, or simply be
prepared to put them in on an "as required" basis. The
first takes less time.

Loops and repeating
In the first installment we briefly examined one form of a
programmatic loop, a 'do-while'. Let's continue some
discussion on various aspects of loops in programming in
PL/I. The 'do while' keeps the program operating within
the loop as long as the condition defined is true. By true, I
refer to the boolean concepts of true and false. The do-
while loop requires a boolean true condition in order to

Lifelines/The Software Magazine, Volume IV, Number 3

operate. When the condition is false, the loop is exited.
Here's an abbreviated program segment where you see
the do-while in action:

do while (TRUE);
put list ('input name :');
get edit (name) (a);

end;/* do while */

The do-while loop will continue getting names as long as
the predefined condition is true. The do-while loop is very
similar to BASIC's 'while-wend':

true = -1
while true

print "input name'
input name$
wend

How was the condition predefined as true in our exam-
ple? Let's add two more lines to this code segment:

%replace TRUE
by '11?

do while (TRUE)
put list ('input name :');
get edit (name) (a);

end; /*do while*/
In the last article we briefly discussed constants and how
to use the %replace statement. Here's another use for
%replace. The form '11? or '01? is called a bit string. In PL/I
the bit string '11? is defined as true, and '01? is defined as
false. So far, so good. We know how to predefine a simple
true condition. In the above example, we are dealing with
a do-forever because there is no specific provision for a
false condition to exit the loop. Take a specific provision
like "do while not end-of-file." This incorporates the use of
the logical 'NOT' and this is the way it's done:

do while (name t = 'eof')
The caret sign (t) is used to signify the logical 'not'. Now
this statement causes the program to continue to loop un-
til it reaches the end of the file. As long as the condition
"not end-of-file" exists, the program will continue to loop:

%replace TRUE
by '11?;

do while (name t = 'eof')

end; /*do while*/

A particularly useful form of the do statement is the
iterative do. It will iterate for a finite number of times. The
following mini-program prints the numbers 1 to 26 down
the screen and stops:

del
i fixed;

doi = l t o26 ;
put skip list (i);
end;

(continued on next page)
13

'end'. Did you notice the control L at the end of the last
'put' statement:

put file (line printer) list
(' is cordially invited . . .etc.tL');

By using the caret "t" in the output line, PL/I will
automatically alter the high order nibble to output a con-
trol character. We used tL to clear the screen in the last arti-
cle, but here tL brings up a new sheet of paper (form feed)
on the printer. Another loose end I want to tie up is the
call, but that takes another section.

The call
I sneaked in a 'call' statement in our Uncle Harry program:

call print invitation(name);
Another procedure (named 'print invitation') is being
"called" with this statement. Here is the entire procedure
being called:

print invitation:
proc(name);

del
name char (128) var;

put file (line printer) list (name);
put file (line printer) list

(' is cordially invited . . .etc.tL');
end print invitation;

When another procedure is being called, the main pro-
cedure redirects the program flow to the called procedure.
When the procedure being called is completed, the pro-
gram flow automatically returns to the main procedure to
the next line after the one that made the call. The calling of
procedures is similar to BASIC's 'gosub' but gosub will
not pass a parameter, and a call will. Before discussing
what parameters are, I want to point out that some en-
hanced versions of BASIC have added a call, one of them
being CB-80. If our Uncle Harry program were written in
CB-80, the call statement would look like this:

call print.invitation (name$)

Back to parameters. A parameter is also referred to as an
argument, particularly when it is used in the call state-
ment. Parameters or arguments are the way that values
(variables and constants) are passed to procedures and
functions so that they may be acted upon (and in the case
of functions a value returned). The procedure 'print
invitations' is called, and the string variable 'name' is
"passed" to the 'print invitations' procedure. In the Un-
cle Harry program example, the procedure being called
('print invitations') is a "nested procedure" nested
within the main program procedure, 'guest list'. The
name string (any name but Uncle Harry's) is handed or
passed to the procedure by the call. Any name, except
miserable old Uncle Harry, will be passed to the printer
procedure, and an invitation will be printed.

Procedures do not have to be nested one inside the other,
but sometimes nesting procedures have advantages.
Nesting procedures keeps variables!that lare local to the
outermost procedure global to the inner, nested, pro-
cedures. It also provides continuity to the program by

The BASIC equivalent would be this:
for i = 1 to 26

print i
next i

Let's put some of this knowledge to work using the
iterative do and the do-while together. Here's a program to
create a guest list for a party. The console asks the operator
to input the name of the guest. The operator can input as
many as 100 names, and everything is fine unless the pro-
gram sees the infamous name of 'Uncle Harry7:

guest list:
proc options (main);

% replace
CLEAR by 'IL';

del
name char (128) var;

put list (CLEAR);
do i = 1 to 100 while (name t = 'Uncle Harry');

put list ('input the name of the guest ');
get edit (name) (a);
get skip;
call print invitation (name);
end; /* do while */

print invitation;
proc (name);
del

name char (128) var;
put file (line printer) list (name);
put file (line printer) list

('is cordially invited . . .etc.IL);
end print invitation;

end guest list;

This incomplete program will print a guest list of no
more than 100 guests as long as you don't invite Uncle
Harry. If you do, the guest list stops right there.

There are a few loose ends I'd like to clarify. One of them
is reminder statements (/* this is a reminder statement
/). Anything preceded by a 7' is ignored by the com-
piler. Any new line after '*/' is read. In the above pro-
gram examples I have added the reminder statement
7*do while*/' after the 'end' statements of do-while
loops. I do this to help me keep track of my end state-
ments, specifically to make sure I have enough of them.
Every procedure block and do-while loop needs an end
statement to complete it. The compiler keeps rigorous
track of the nesting levels in the program, and if the
nesting levels don't balance, it gets upset. The program
won't compile; and, adding insult to injury, the compiler
gives you a nasty message on the console. This kind of
error is called a nesting depth error. To help you keep
track of your end statements, try using reminder state-
ments. By the way, should you get blown out of the
water with a nesting depth error, recompile the program
using the N switch. Let's say the name of your program
is BADPROG.PLI. Recompile it like this:

A>PLI BADPROG $N

A compilation using the 'n' switch forces the compiler to
show the nesting level at the leftmost side of the code. A
little detective work on your part will find the missing

14 Lifelines/The Software Magazine, August 1983

associating the inner procedures logically with the outer
procedures. If this explanation of the advantages of
nested procedures is unclear to you at this point, never
mind about that. Each article will gradually make these
concepts clearer to you, and also procedures will be dis-
cussed some more a little later in this article.
By the way, I hope you noticed the use of list I/O in
'print procedure'. The reason? I wanted the code in the
called procedure to be as simple as possible because I only
wanted to demonstrate the call and discuss nested pro-
cedures . Edited I/O would be much more appropriate for
printing out invitations, but it takes more code. Edited I/O
plain and fancy will be covered in another article.

Calling is an extremely powerful tool of not only PL/I, but
any structured language that supports it. It allows the pro-
grammer to write a procedure just once, but call it as often
as he needs to. It is also the way program flow is directed
from one portion of the program to the other without us-
ing goto's. Proponents of "goto-less programming" can
avoid goto's by 'call to's', but it is not appropriate to
automatically substitute calls for goto's. Indiscriminate
use of calls is bad, too. The most important aim of the pro-
grammer should be to make his code clear and easy to
read. I feel that structured programming is the ONLY way
to program. Indiscriminate use of goto's can make a pro-
gram unstructured because they make the direction of the
program flow confused or obscure. On the other hand,
goto's are not always "bad" programming practice. In fact,
sometimes they offer the only logical way to pursue your
programmatic idea. Some languages like C provide break
and continue statements to allow exiting a loop or return-
ing to the loop test, but languages that do not provide
these kinds of conveniences have to make use of goto's. In
addition, goto's are almost impossible to avoid in excep-
tion processing. Another point — using a call as a substi-
tute for a goto doesn't automatically make your program
structured. Calls can be a cop out, too, if the person read-
ing your code can't figure out why you put in the darned
thing. Goto's should be used sparingly, and calls should
be used with foresight. A lot of ground has been covered
in a short time. The rest of the article will bring a lot of
what we have been talking about into a more cohesive unit
by reviewing what has been covered with extended ex-
planations while we talk about a few more PL/I basics.

Blocks and scope of variables
When we talked about calls, we talked about procedures.
Just what the heck are procedures anyway? They are one
of many kinds of program blocks. PL/I, like Algol, is an
Algol-like language, and all Algol languages like PL/I are
block structured. A block is a grouping of one or more
statements into "logical" units. Blocks come in all kinds of
flavors. There are begin blocks, short form blocks, pro-
cedure blocks and function blocks (a variation of a pro-
cedure block). There is a lot to learn about blocks, and we
are going to explore a few specifics right now.

First of all, blocks can be external or internal. An external
block has no blocks surrounding it — it is not contained
within any other blocks. The procedure " main" is an ex-
ample of an external block. Internal blocks, on the other
hand, are contained within another block. The nested

Lifelines/The Software Magazine, Volume IV, Number 3

procedure we saw in our Uncle Harry program is an inter-
nal block contained within the main procedure, an exter-
nal block. The terms external and internal are also used to
describe the relative positions of blocks. Internal blocks
are said to be external to any other blocks within them.
Hand-in-hand with the concept of external and internal
blocks is the concept of "scope of variables." The scope of
variables is a reference to where the variable is known by
the program, and this is very closely related to the concept
of external and internal blocks. For instance, variables
declared inside an internal block are known to that block
only — they are "local" to that block. On the other hand,
variables declared outside of the main block are known to
the entire program and are "global" to the program. Let's
take a look at a basic begin block. A begin block starts with
the word 'begin' and ends with the word 'end'. Begin
blocks can be preceded with something called a 'label'.
Look at the example below:

Calvin:
begin;
del

i fixed;
doi = l t o32 ;

put skip list ('this is an example of a block');
end; /* do */

end calvin;

Calvin is the label for this begin block. If it is necessary to
refer to this begin block, the label will be used, and we will
use it right now by referring to this block as "block calvin."
Now let's look at the variables declared within the block.
The 'i' variable will have its value only within the block
calvin — it is local' (known only) to that block. What hap-
pens when a begin block is encountered by the program?
The program flow will enter at the top, execute through to
the bottom and exit. It's all easy enough, but remember
this particular point when we look at procedures, another
kind of block. The program flow works differently with
procedures, as you will soon see.
Another kind of a block is the "short form block." It is used
in certain programmatic applications like exception pro-
cessing (error-proofing the code):

on endfile (disk file)
begin;
close file (disk file);
goto end_Joop;
end;

The "on endfile (disk file)" is an end-of-file condition,
and whenever this condition is raised as the program ex-
ecutes, this entire begin-end block will be executed. Those
of you familiar with Pascal will notice that PL/I's begin-
end block is similar to Pascal's.

Now we can look at procedures. Procedures are blocks
that must be called. A begin block has an optional label,
but a procedure MUST have a label. (Otherwise, how
would you call it?)

gucci:
proc;
del

number fixed static init (1);
(continued on next page)

do while (number ~ = 10);
put skip list (number)
number = number + 1;
end; /*do while*/

end gucci;

'Gucci' is a label. The value of the variable 'number' in the
declaration is local to the gucci procedure only. (By the
way, don't let this declaration throw you just because it's
different. Briefly, here's what it does. It initializes 'num-
ber' to one. Numbers cannot be initialized unless the stor-
age class has been declared static. Thus the term "static" is
included in the declaration, and it signifies that the stor-
age allocated for the variable will be held open for the
length of the program. The term "fixed" signifies fixed in-
teger, like type integer in other languages. The '(1)' in the
declaration means that 'number' starts off with a value of
one. All of this will be covered later, but I just threw a dif-
ferent kind of declaration in so you can be aware that there
are many different kinds. The important thing to remem-
ber right now is that the value of the variable 'number' is
local to this procedure only. Incidently, the '~= ' symbol
in the program line 'do while (number ~ = 10);' is another
logical 'not', and the meaning of that line is simply "do
while number is not equal to ten." What this program
does is print the numbers 1 through 9 on the screen. How
does the program flow enter this procedure? The only way
this procedure can be entered is by calling it. The pro-
cedure will then execute and return to the line after the
line that called it. Here's a program line that will call this
procedure:

call gucci;
A procedure cannot be entered by the program flow "fall-
ing through" and into it. Remember in BASIC when you
have forgotten to stop the program at the end of its logical
execution, and it "falls through" into the subroutine you
have put at the bottom? Then you get that irritating
"return without gosub" error? It can't happen with a pro-
cedure. The procedure won't allow itself to be entered ex-
cept by a call. Program flow is precisely controlled by this
feature, and it's one of the joys of structure. Procedures are
usually called from the main procedure. They can be call-
ed from any point in any procedure, but if they are called
from the main procedure, the program logic is more ap-
parent and it's easier to for someone reading the code to
follow it. It is extremely important in any language that
programs be easily "human" readable. If a program can-
not be easily read, it cannot be easily maintained.

A procedure can have parameters passed to it the way we
passed the value of 'name' to the 'print_invitations' pro-
cedure in our Uncle Harry program. We described what
parameters are earlier in this article, but before we take
another look at them, we had better define some more
terms. A blanket use of the term "parameters" is not
precisely correct, so let's get more specific. The data items
that are to be "passed" to a procedure are called 'argu-
ments' or 'actual parameters'. When they are received by
the procedure, they are called 'formal parameters'. I used
'name' in our Uncle Harry program to signify the actual
parameter and the formal parameter, but they are not
always the same name. In fact, most often they are not.
Enough talk. It makes more sense when you look at the
code:

proc options (main):

call jordache (name); /*name is the actual parameter*/
next line;

jordache:
proc (string in); /*string in is the formal

parameter*/
del

string in char(32) var;
put skip list ('preferred customer : ',string in);

end jordache;
What do we have here? The main procedure calls the jor-
dache procedure, and it passes to the jordache procedure
the argument or actual parameter 'name'. The jordache
procedure receives 'name' as the formal parameter
'string in'. All this program fragment does with the data
item being passed is print it out on the screen. Let's say
"Ima Jeanslover" is the 'name' which has been input in
the main procedure. It is passed to the jordache pro-
cedure which prints the following out to the screen:

preferred customer : Ima Jeanslover
Looking at the scope of variables in this program segment,
'name' is global to the program, but 'string in' is local to
the procedure jordache only. The various blocks we have
discussed are pretty straightforward, but all this talk
about local and global variables is probably a little confus-
ing. Some of you might be muttering "Who cares whether
the darn variable is global or local to one block or
another?" That's a very good question. We are not going to
go into that in this article, but keep that question in mind!
Fbr now, at least, you are cognizant of the fact that PL/I of-
fers you the option of controlling where your variables
will be known in the program. This offers you a significant
degree of programming power, and in later articles you
will see why.
Blocks can't be discussed without mentioning the return.
Here's but a brief peek at the return. You can use the
return at any point within a block to allow the program
flow to go back to the line immediately following the line
which called the block in the first place. You can do a sim-
ple return, or you can return a value.

return;
return (x);

You can even do multiple returns within a block, and they
can be downright handy:

if weight = 0 then
return;
else if weight > 200 then

return ('fat')
else

if weight < 100
return ('skinny7);
else

return ('normal');

Let's stop here. In the future we'll finish up the very last
of Chapter One with brief looks into declarations, vari-
able types and files. We'll also be looking at Chapter Two
which explores the fascinating world of edited I/O, plain
and fancy.

16 Lifelines/The Software Magazine, August 1983

'More documentation?
Go to a book store

'‘Training? Call a
computer school.

Technical support?
Call the publisher.’

Interested in dBASE IT or 1-2-3?
Beware The Dreaded Finger Pointers!

Free dBASE II" User’s Guide
Order dBASE II™ from us, and
you’ll receive a free copy of
our dBASE II™ User’s Guide.
You can also buy the User’s
Guide first for only $29, and
then receive a full cred it when
you buy dBASE II.™
French Translation
La Commande Electronique
5 Villa Des Entrepreneurs
75015 Paris, France
Japanese Translation
JSEInt ’ l
9FToyo Bldg. 6-12-20 Jingmae
Shibuya-ku Tokyo, Japan 150

Prices You Can Afford
tl-2-3™ $399
tdBASE II™ $479
tABSTAT™ $379
dBASE II™ User’s Guide $29
DBPIus™ $95
dGRAPH™ $199
dUTIL™.. $69
dNAMES™ $109
QUICKCODE™ $199
TEXTRA™ $60*
t No-risk 60 day money back guarantee
*Only available for IBM PC with MS-DOS.

Sound familiar? Does your
dealer turn into a “finger
pointer” when you need help?

At SoftwareBanc we offer a
complete system that doesn’t
stop when your software is
delivered.

Careful Product Selection
Do you get bewildered by
the endless lists of soft-
ware you find in most ads?
Let us be your quality control
department.

We only sell the best pro-
grams on the market. After a
thorough evaluation we chose
dBASE II™ for data process-
ing, and 1-2-3™ for financial
management.

Our complete line of add-on
products help you to continue
to get the most from your
software.
Expert Technical Support
When you buy software from
us, you can rest assured that
help is only a phone call
away. Just call us at (617)
641-1235 forall the free
support you need.

Free Catalog
If you want to learn more about
SoftwareBanc, call or write for our
free product catalog.
SoftwareBanc
661 Massachusetts Avenue
Arlington, Mass. 02174
For technical support call:
(617)641-1235
Dealer Inquiries Invited.
™Manufacturer’s trademark
Payment may be made by: MasterCard, Visa, check,
C.O.D., money order. Mass, residents please add
5% sales tax. Add $5.00 for shipping and handling.
Prices subject to change.

SoftwareBanc |
r Order Toll Free \
• 1-800-451-2502 j
I (617) 641-1241 in Mass. ' •

1-2-3" &dBASE IF Classes
Want more in-depth informa-
tion about dBASE II™ or 1-2-3™?
Attend a SoftwareBanc Semi-
nar near you. Each session runs
from 9 to 5, and costs $175.
Seminars are in lecture
format with a custom sound &
video system which is used to
display taped interviews with
prominent software personal-
ities and sessions with various
software programs.

Anchorage
August 11-12
New York City
September 19-23

Los Angeles
July 18-22
Washington, D.C.
Aug. 29-Sept. 2

| SoftwareBanc |
661 Massachusetts Avenue

Arlington. MA 02174

17Lifelines/The Software Magazine, Volume IV, Number 3

Product Status Reports
New Versions for CB-80 Compiler And Access Manager
by Robert R VanNatta
CB-80 COMPILER Version 1.4 of CP/M Plus and support for the system level error trapp-

ings provided by CP/M Plus. The latter is accomplished by
having the error trapping function (ERRCOD) of AM-80
return system errors as well as Access Manager errors.
A more conspicuous modification which will be of par-
ticular interest to CB-80 users, however, relates to the file
buffers. In the single-user environment, the file buffer
area has been moved from the data-segment (DSEG) of
memory to the root portion of the code segment (CSEG).

Users of Digital Research CB-80 should be aware of Ver-
sion 1.4. This version fixes a number of minor bugs and
adds two new functions. Perhaps, most frustrating of the
bugs fixed involved the refusal of some of the programs to
function if an attempt was made to load them from the
WordStar ZR' command. Enhancements include the addi-
tion of STRINGS and SHIFT functions. The STRINGS
function imitates the similarly named function in some
versions of Microsoft BASIC. For example, STRINGS
(30000,'A') will generate a string made up of the character
'A' thirty-thousand characters long. String building ac-

several thousand bytes larger than it was previously. (The
exact size of the file buffer is defined by the programmer.)
The trade off in this change involves the loss of the pos-
sibility of using the file buffer area for other purposes
(when the files are not open) in exchange for the ability to
keep files open across overlays.
Stated another way, reliance on the CB-80 exit routine to
close all files is no longer possible. To the contrary, files
opened under the control of Access Manager now stay
open until explicitly closed. Program overlays may be
freely exchanged during program execution without the
bother of closing and reopening files.

mentation and executes faster than concatenation rou-
tines (such as A$ = 'A' + 'A'). It is a bit difficult to benchmark
the generation of 30k strings in a microcomputer, how-
ever, a routine such as:

print fre.mfre
print "hit key to begin”
a°/o = inkey
for i% = Ito 100
a$ = string(30000,"a")
a$ = null$
next i%
print "done"
print fre,mfre

was observed to execute in about 32 seconds. The FRE and
MFRE functions returned the same answers both before

check memoryrem

start
loop 100 times
build 30k string
destroy it

rem
rem
rem
rem

recheck memoryrem

The fastest CP/M-80 C
compiler available today

Version 1.5 contains some nifty improvements:
The unscrambled, comprehensive new User’s Guide

comes complete with tutorials, hints, error message
explanations and an index.

The CDB symbolic debugger is a valuable new tool,
written in C and included in source form. Debug with
it, and learn from it.

Hard disk users: You can finally organize your file di-
rectories sensibly. During compilation, take advantage
of the new path searching ability for all compiler/linker
system files. And at run-time, the enhanced file I/O
mechanism recognizes user numbers as part of sim-

memory fragmentation or other memory loss.

The SHIFT function follows the format of SHIFT(I%,N%)
and executes a shift right or binary division. Stated

power.
The following program demonstrates the shift function

vious that if you attempt to 'shift' a 16-bit integer more

of the register and the result will be zero!
10 input "enter dividend”; I%

input "enter bits to shift”;N°/o
print “divide”;a°/o/(12tN°/o)
print "shift”;shift (l°/o,N°/o)
goto 10

This bit maneuver is dramatically more efficient than a
division and ought to be used instead of the division func-
tion whenever possible.

rem must be positive number
rem divide function (old way)
rem shift function (new way)

where on your system.
BDS C’s powerful original features include dynamic

overlays, full l ibrary and run-time package source
code (to allow customized run-time environments,
such as for execution in ROM), plenty of both utilitar-
ian and recreational sample programs, and speed.
BDS C takes less time to compile and link programs
than any other C compiler around. And the execution
speed of that compiled code is typically lightning fast,
as the Sieve of Eratosthenes benchmark illustrates.
(See the January 1983 BYTE, pg. 303).

8” SSSD format, $150
Free shipping on pre-paid orders
Call or write for availability on
other disk formats

K BD Software
5 P.O. Box 9
■ Brighton, MA 02135
m617) 782-0836

ACCESS MANAGER Version 1.1
Access Manager (AM-80) version 1.1 became available

corrections, enhancements were made in two areas. The
first area involves support for CP/M Version 3.0 (CP/M
Plus). This includes support for the PASSWORD feature

Lifelines/The Software Magazine; August 1983

TXT.ASM DB Formatfeature

by Thomas HUI
Introduction
As a programmer I find myself creating menus and 'help'
screens many times for the various end user programs I
write. Since much of my work is written in assembly-level
code, I eventually wind up spending a large amount of
programming time attempting to paginate, justify mar-
gins, and line up tabular columns for the screen and
printer output. I finally decided to create a program to
help me prepare formatted text material for assembly level
programs. The program described here is the result.

Abstract

label FILTER, which is reached after skipping over the em-
bedded copyright notice (which is also used as the signon
message). Note that the copyright notice is terminated by
a CTRL-Z (EOF). This allows the user to TYPE the .COM
file if s/he wishes to examine the signon message without
executing the program. The code at FILTER examines the
primary File Control Block (FCB) to find out if the user
specified an input file. If no input file was entered, the
program prints a short description of usage and format
and returns to the CP/M level. If an input file has been
entered, the program checks the secondary FCB looking
for the optional output file name. If the secondary FCB
contains a file name, it is transferred to the internal output
FCB, else the input file name is used with the type chang-
ed to " .DB ".
After setting up both FCBs the next step is to open the files
for input and output. The input file is first opened, with
an ERROR exit if the BDOS says the file doesn't exist. Then
the output file is first deleted, then re-created to make
sure we don't wind up with two files with the same name
on the disk. If an error occurs here, we abort to the CP/M
level with an error message indicating a "no disk space"
condition.

Now that both files are ready for I/O, the program in-
itializes the various pointers, flags, and counters used
later and calls the FILL$BUF routine. This subroutine
reads the entire input file into memory starting at the label
IN$BUF. A check is made after reading each sector to
make sure we don't overwrite the BDOS. If the input file
tries to exceed the available TPA, an error message is out-
put and the program aborts to the CP/M level. (It might be
better to just process what we have in memory, but I don't
really anticipate text files that large for assembly pro-
grams.
The input text has been loaded to memory. We can now
begin processing it for output. This is accomplished in the
loop at label LP2. The loop calls SETJLINE, MAKE$LINE,
and WRT$LINE in sequence until MAKE$LINE detects an
end-of-file marker and sets the EOF$FLG flag. When the
program detects the change in the flag, it purges the par-
tial output buffer to disk, prints a count of the number of
input and output lines, closes both files, and returns to
CP/M level.

Most of the processing is performed in the label
MAKE$LINE. The subroutine SETJLINE preloads the
output line buffer with the leading tab,'DB' and tab and
clears the FIRST and IN$QUOTE flags. The MAKE$LINE
routine fetches each character from the input buffer and
examines it for the special characters that must be trans-
lated. If a carriage return, line feed, form feed, or single
quote is detected, the program vectors to the appropriate
routine, which places the proper label(s) in the output

(continued on next page)

The program TXT2ASM accepts as input the name of a file
containing the text to be included in the assembly pro-
gram, and outputs a file containing the text reformatted
into 'DB' statements suitable for assembly by any CP/M
assembler. The format of the command line is:

A>TXT2ASM <infile> [<outf ile>]

where <infile> is the unambiguous name of the text file
and <outfile> is an optional output file name. If no output
file name is specified the reformatted text is sent to the file
<infile name>.DB . During reformatting, certain control
character sequences are translated into equivalent assem-
bler labels. In particular, the carriage return is output as
"CR" and the line feed control is output as 'LF'. The form-
feed control is also translated into "FF" in the output file.
All other ASCII characters are passed untouched to the
output file. The general format of each output line is:

<tab>DB<tab>'<text>'

In other words, each line begins with a leading tab, follow-
ed by the assembler operator "DB" and another tab. Any
text is enclosed within single quotes. Imbedded quotes
are translated to double quotes, as required by the assem-
bler. Output lines are 'broken' at sixty characters, since
Digital Research's MAC macro assembler is upset by text
lines longer than 64 characters. This feature is controlled
by an equate near the beginning of the program, if you
wish longer (or shorter) output lines.

Note that the program as written utilizes the Z80 macro
library which is included with the D.R. MAC program. For
those of you with 8080s, it should not be too difficult a task
to rewrite the Z80 operations into their 8080 equivalents.
The primary Z80 operations used are the relative jumps
and double register stores and recalls. Also used is the
block transfer instruction, LDIR.

About the program
The program is written in a modular (almost) fashion to
allow easy alterations in the future. The entry point is the

Lifelines/The Software Magazine, Volume IV, Number 3

considered right now, since the program does just about
what I want it to do. It may be advisable to add translation
of the CTRL-G (bell) character into the label "BELL", just to
be complete. Other special control codes or characters
may be translated with ease in the MAKE$LINE routine,
at the user's option. Echo of the output lines to the ter-
minal or printer may be added, if desired.

Afterthought
Notice that the formatted output contains the symbolic
labels "CR", "LF", and "FF". These labels MUST be
established in your program, somewhere. The usual
method is to place the following equates near the front of
the program:

CR EQU ODH
LF EQU OAH
FF EQU OCH

If these labels are not defined, you will get all kinds of er-
ror reports when the main program is assembled.

Mercenary thoughts
If you are like me, you don't care to type reams of source
code into your system when you see a great program in a
magazine. For those of you who prefer to spend a little
lucre rather than develop letter imprints on your finger-
tips, send me $25.00 and I will mail you a single density 8"
disk (sorry, that's the only format I have) with the source
code for ERAQ, SETIO, SETATR, and TXT2ASM, plus the
text files for the articles describing each of these pro-
grams. (Like Kelly Smith, I hope to make millions this
way).

; Author Thomas Hill
200 Oklahoma St.
Anchorage, AK 99504
(907) 337-1984

; Modifications & updates (in reverse order):

; 10/09/82 Version 1.1
; Cleaned up code
; 09/30/82 Version 1.0

; This program accepts as input a text file created by any of the CP/M
; text editors. It outputs a file formatted as “DB” statements suitable for
; inclusion in .ASM and .MAC assembly files. Carriage return, linefeed
; sequences are translated into the label sequence “CR,LF.” Tabs are
; passed unaltered and form feed control codes are translated into the
; label “FF.” In deference to the MAC assembler, which dislikes quoted
; text lines longer than 64 characters, input lines longer than 60
; characters are broken into two or more output lines.

; Note that this version assumes that the input text will fit in available
; TPA.

; SYSTEM EQUATES

line. The PUT$CR routine requires special attention
because it indicates the end of the input line. Line feeds
following the initial carriage return are taken care of and a
real carriage return, line feed pair is placed in the output
line. Output lines are counted here.
Notice that each of the special character routines must
keep track of whether the output line is currently 'inside' a
quoted string, and must close the quote if needed. We
must also know whether we are at the beginning (FIRST)
of a text line, in order to decide whether to place a
separating comma or not.
When the MAKE$LINE routine detects an EOF in the in-
put stream, it creates a special output line consisting of a
quoted dollar sign ('$'), which is the CP/M End-of-mes-
sage marker. This line is the last line of the output file. You
may, of course, place your own EOM markers within your
text for multiple messages. The '$' will be passed to the
output file without modification.

During construction of the output line, a count is kept of
the number of characters which have been placed in the
output line buffer. If the count exceeds the value of
MAX$LEN (default 60), the current output line is ter-
minated and control returns to the processing loop. This is
in deference to certain assemblers which become upset
with text lines longer than a certain number of characters.
After each output line has been built, it is written to the
disk buffer by the WRT$LINE routine. As WRT$LINE
moves the formatted output line to the buffer, it watches
the buffer capacity. When the buffer becomes full, it is
written to the output file and the buffer pointer is reset to
the beginning of the buffer. After each write to the disk, an
error check is made for a disk full condition. If the disk
becomes full during writing, the output file is closed to re-
tain what has been formatted and the program aborts to
CP/M.
At the end of input processing, any partial buffer contents
are flushed to the disk by the subroutine FLUSH. FLUSH
computes the number of sectors containing valid data,
adds one for good luck, and fills the balance of the buffer
with EOF markers. It then writes the calculated number of
sectors to the output file.

After all processing has been performed and the output
buffer has been flushed, counts for input lines and output
lines are calculated and displayed. Both line counts are
maintained in double precision memory locations (prob-
ably overkill, but I might have more than 255 lines of text).
The routine HL2DEC converts the contents of the HL
register pair into ASCII decimal digits and prints the
resulting value. Leading zeros are suppressed, except for
a (possible) zero in the units position. The value conver-
sion is performed using conventional power-of-ten
subraction in the routine CNVRT.

The balance of the program is data area, containing error
and status messages, pointer and flag storage, and buffer
areas.

Further modifications and bugs
To my knowledge, there are no bugs present, but I
wouldn't swear to it. Future versions are not really being

CPM EQU 0
BDOS EQU CPM + 0005H ; BDOS ENTRY POINT
FCB1 EQU CPM + 005CH ; CP/M FILE CONTROL

; BLOCK
FCB2 EQU CPM + 006CH ; SECOND FILE

; CONTROL BLOCK
CBUF EQU CPM + 0080H ; DEFAULT COMMAND

; BUFFER
TPA EQU CPM + 01OOH ; USER PROGRAM

: AREA

Lifelines/The Software Magazine, August 1983

MVI B,24
LP1: MVI M,0 ; fill rest of FCB with zeros

INX H
DJNZ LP1

; NON-DISK I/O FUNCTIONS

CONIN EQU 1 ; CONSOLE INPUT
CONOUT EQU 2 ; CONSOLE OUTPUT
LSTOUT EQU 5 ; LIST DEVICE OUTPUT
PRTBUF EQU 9 ; SEND A STRING TO

; THE CONSOLE
RDBUF EQU 10 ; GET A STRING FROM

; THE CONSOLE
CONSTAT EQU 11 ; CONSOLE STATUS
VERS EQU 12 ; RETURN CP/M (MP/M)

; VERSION NUMBER

: DISK I/O FUNCTIONS

; input and output FCBs are set. Now open input file and fill buffer
LXI D,FCB1
MVI C,OPENF
CALL BDOS ; try to open the input
INR A
LXI D,NO$OPEN
JZ ERROR ; nothing there to open.
LXI D,OUT$FCB
MVI C,DELETF ; remove any existing

; output file
CALL BDOS
XRA A
LXI B,24

ZERO: STAX D
INX D
DJNZ ZERO ; rezerofeb
LXI D,OUT$FCB
MVI C,MAKEF ; and re-create it
CALL BDOS
INR A
LXI D,NO$MAKE
JZ ERROR ; can’t make file, no room

; SELECT DISK
; OPEN FILE
; CLOSE A FILE
; DELETE A FILE
; READ A RECORD
; WRITE A RECORD
; CREATE A FILE
; SET DISK DMA
; ADDRESS

SELDSK EQU
OPENF EQU
CLOSEF EQU
DELETF EQU
READF EQU
WRITEF EQU
MAKEF EQU
SETDMA EQU

THOSE FUNCTIONS REQUIRING A BYTE ARGUMENT WILL
EXPECT THAT BYTE TO BE IN THE E REGISTER. ADDRESS
ARGUMENTS ARE PASSED IN THE DE REGISTER. RETURN
CODES ARE PASSED IN THE ACC. IN GENERAL, A RETURN OF
ZERO INDICATES SUCCESS. WHILE A OFFH INDICATES FAILURE. ; both files open, set up counters and pointers

LXI H.0
SHLD lLNCNT ; input lines
SHLD OLNCNT ; output line count
LXI H, IN$BUF
SHLD IN$PTR ; input buffer pointer
LXI H,OUT$LINE
SHLD OUT$PTR ; output line buffer
LXI H,OUT$BUF
SHLD OUT$DSK ; disk output buffer

; character equates

CR EQU ODH ; carriage return
LF EQU OAH ; l ine feed
ESC EQU 1BH ; escape code
EOF EQU 1AH ; end-of-file, control-z
BELL EQU 07H ; terminal bell
BS EQU 08H ; backspace
TAB EQU 09H ; tab char
APOS EQU 9 9 9 9 ; apostrophe
FORMF EQU OCH ; formfeed

FALSE EQU OOH
TRUE EQU OFFH

MAX$LEN EQU 60 ; maximum length for
; output lines

MACLIB Z80

ORG TPA

TXT2ASM:
JMP FILTER ; over copyright notice

SIGNON: DB ’Text to .ASM Formatting Programmer,If
DB ’Copyright October, 1982 by ’
DB ’Thomas N. Hili’,cr,If,LF,’$’,eof

FILTER: LXI D,SIGNON
CALL PMESS
LDA FCB1 + 1 ; check for input file
CPI > »

JZ USAGE ; tell how to use.

; pointers & counters set, begin filtering operation

CALL FILLSBUF ; fill the input buffer
LP2: CALL SET&LINE ; set up the output line

CALL MAKE$LINE ; and make one
CALL WRTSLINE ; write the line to disk
LDA EOF$FLG ; was there an EOF

; during input?
ORA A
JRZ LP2 ; nope, continue
CALL FLUSH ; yes, flush remaining

; output
KILL: LHLD lLNCNT

CALL HL2DEC ; print number of input
; lines

LXI D,IN$MSG
CALL PMESS
LHLD OLNCNT ; output lines
CALL HL2DEC
LXI D,OUT$MSG
CALL PMESS
LXI D,OUT$FCB
MVI C,CLOSEF
CALL BDOS ; shut things down
INR A
LXI D,NO$CLOSE
JZ ERROR ; oh,oh. . .can’t close file!
JMP CPM ; return to operating

; system

; check for second file name as output

LDA FCB2+1
CPI 9 9

CZ USE$SAME ; use the same file
; as output

LXI H.FCB2
LXI D,OUT$FCB ; move to output FCB
MVI B,12
LDIR ; move it

; fill the input buffer, set EOF flag if we bump into end of file.

FILL$BUF:
LXI H, IN$BUF (continued on next page)

21Lifelines/The Software Magazine, Volume IV, Number 3

MAKE1: MVI A,TRUE
STA FIRST ; not first char anymore
LDA INSQUOTE ; are we inside quoted

; string?
ORA A
JRNZ MAKE2 ; yes, don’t place apos
CALL PUTSAPOS ; no, mark start of text line
MVI A,TRUE
STA INSQUOTE ; we are now.

MAKE2: MOV A,M ; recover character
MAKE3: INX H

STAX D ; place character in
; output line

INX D
CALL OUTSCNT ; count output chars
CPI MAXSLEN ; reached end?
JNZ MAKEO
LDA INSQUOTE
ORA A ; inside quoted line?
JRZ MAKE4 ; nope.
CALL PUTSAPOS ; end of quoted text

MAKE4: MVI A,CR
STAX D ; real end of line
INX D
MVI A,LF
STAX D
SHLD INSPTR ; save current buffer

; pointer
RET

ENDSIT: LDA INSQUOTE
ORA A ; inside quoted string?
JRZ ENDIT1
MVI A,FALSE
STA INSQUOTE
CALL PUTSAPOS ; yes, mark end

ENDIT1: LDA FIRST
ORA A ; first position in line?
JRZ ENDIT2
CALL PUTSCOMMA ; nope, need a comma

; here
ENDIT2: CALL PUTSAPOS

MVI A,’$’ ; mark end of text
STAX D
INX D
CALL PUTSAPOS ; withCP/MEOM

marker
MVI A,TRUE
STA EOFSFLG
JMP MAKE4 ; end end line

FILL1: SHLD INSPTR
XCHG
MVI C.SETDMA
CALL BDOS ; tell BDOS where to
LXI D,FCB1
MVI C.READF
CALL BDOS ; read something
ORA A
JRNZ FILL4 ; got EOF, set flag
LHLD INSPTR
LXI D,80H
DAD D ; next sector
LDA BDOS +2 ; checkfor no room in

CMP H
; memory

JRNC FILL1
LXI D.NOSMEM
JMP ERROR

FILL4: LXI D.CB1
MVI C.CLOSEF
CALL BDOS ; done with that file
LXI H,IN$BUF
SHLD INSPTR ; set pointer to start

RET

; set up the output line buffer.

; of buffer

; preload the initial tab, DB, and tab

SETSLINE:
LXI D.OUTSLINE
LXI H,LN$MSK
LXI B,MSK$LEN
LDIR ; put the line beginning

SDED OUTSPTR
; in place
; save current location in

XRA A
; output line

STA NUMSOUT ; reset output character

STA FIRST
; count

STA INSQUOTE ; and flags for comma

RET
; control

; here we do the work.
; Get characters from the input buffer, translating CR,LF, and FF
; controls to proper labels. Place quotes around text strings, making
; sure to double imbedded quotes. Watch placement of commas and
; length of output line.

MAKESLINE:
LHLD INSPTR ; current buffer pointer
LDED OUTSPTR ; output line pointer

MAKEO: MOV A,M ; get char from input
CPI EOF ; end of input?
JZ ENDSIT
CPI CR
JZ PUTSCR ; mark newline
CPI LF
JZ PUTSLF ; some lines don’t have

; CRs
CPI FORMF
JZ PUTSFF ; and form feeds
CPI APOS ; imbedded quote?
JNZ MAKE1
CALL PUTSAPOS ; put in two apostrophes
CALL PUTSAPOS
INX H
JR MAKEO

; here are the various “PUT” subroutines

PUTSCR: PUSH H
LHLD ISLNSCNT
INX H
SHLD ISLNSCNT ; count input lines
POP H
LDA INSQUOTE
ORA A ; inside quoted string?
JRZ PUTSC1
CALL PUTSAPOS ; close it first
MVI A,FALSE
STA INSQUOTE ; reset flag

PUTSC1: LDA FIRST
ORA A ; beginning of line?
JRZ PUTSC2 ; yep, no comma
CALL PUTSCOMMA

PUTSC2: MVI A,TRUE
STA FIRST ; not beginning anymore
MVI A,’C’; if we got here, then plain character

Lifelines/The Software Magazine, August 1983

STAX D ; put “CR” label in place
INX D
MVI A,’R’
STAX D
INX D

PUT$C3: INX H
MOV A,M ; take care of LF
CPI LF
JNZ MAKE4

PUTSLF: LDA IN$QUOTE
ORA A
JRZ PUTSL1
CALL PUTSAPOS
MVI A,FALSE
STA IN$QUOTE

PUT$L1: LDA FIRST
ORA A
JRZ PUTSL2
CALL PUTSCOMMA
MVI A,TRUE
STA FIRST

PUT$L2: MVI A,’L’
STAX D ; put “LF” label in place
INX D
MVI A,’F’
STAX D
INX D
JR PUT$C3 ; look for some more

PUT&APOS:
MVI A,APOS
STAX D
INX D ; put an apostrophe in

; buffer full, write it out

PUSH H ; save current line

MVI A,BUF$SIZE
CALL WRT&BUF
LXI H,OUT$BUF
SHLF OUT$PTR

pointer

POP H ; output line pointer
JMP WRT1 ; continue with move, if

; any left
WRT4: MOV A,M

INX H
INX D

; get char again

CPI LF
JNZ WRT1

; end of line?

SDED OUTSDSK

LHLD OLNCNT
INX H
SHLD OLNCNT
POP D
POP H
RE

; flush rest of output buffer to disk

; save current location
; in buffer

FLUSH: LHLD OUT$DSK

FLUSH1: MVI M,EOF
INX H

; fill rest of buffer with
; EOFs

MOV A,L
ORA A
JRNZ FLUSH1
LXI D,-OUT$BUF

; till next page break

DAD D ; calc, number of sectors
; towrite

MOV A,H : pages
ADD A ; double for sectors
INR A

WRTSBUF:
LXI H,OUT$BUF

WRT2: PUSH PSW
SHLD OUTSDSK
XCHG
MVI C.SETDMA
CALL BDOS
LXI D,OUT$FCB
MVI C.WRITEF
CALL BDOS
ORA A
JRNZ WRT5
POP PSW
DCR A
RZ
LHLD OUT$DKS
LXI D,80H
DAD D
JR WRT2

; write error, close what we have and abort
WRT5: LXI D,NO$WRITE

CALL PMESS
JMP KILL

; double precision convert HL to decimal

HL2DEC: LXI BflOOOO

; plus one for safety

CALL CNVRT
MOV A,E

10,000s digit

ORA A
JRZ HLD1
CALL DIGOUT

; skip leading zeros

; output line
RET

PUTSCOMMA:
MVI
STAX
INX
RET

A, ’ , ’
D
D

PUT$FF: MVI A,’F’
STAX D
INX D
STAX D
INX D
RET

; count output chars, return count in A

OUTSCNT:
LDA NUM$OUT
INR A
STA NUM$OUT
RET

; write output line to buffer. When buffer fills, write it to disk.

WRTSLINE:

WRT1:

PUSH
PUSH
LDED
LXI
MOV
STAX
LXI
MOV
CMP
JNZ
MOV
CMP
JNZ

H
D
OUT$DSK
H,OUTLINE
A,M
D
B,OBUFTOP
A,B
D
WRT4
A,C
E
WRT4

; move line till see a LF
; buffer top

(continued on next page)
Lifelines/The Software Magazine, Volume IV, Number 3

HLD1: LXI BflOOO
CALL CNVRT ; 1,000s digit
MOV A.E
ORA A
JRZ HLD2
CALL DIGOUT

HLD2: LXI BylOO
CALL CNVRT
MOV E,A
ORA A
JRZ HLD3
CALL DIGOUT

HLD3: LXI BflO
CALL CNVRT
MOV A.E
ORA A
JRZ HLD4
CALL DIGOUT

HLD4: MOV A.L ; print last digit,
; even a zero

CALL DIGOUT
RET

CNVRT: MVI Er1
CONV1: INR E

DAD B
MOV A,H
ORA A
JP CNV1
MOV A.B
CMA
MOV B.A
MOV A.C
CMA
MOV C.A
INX B
DAD B
RET

DIGOUT: ADI ’0’
PUSH H

PUSH D
PUSH B
MOV E,A
MVI C.CONOUT
CALL BDOS
POP B
POP D
POP H
RET

; no input file, tell user what to do

USAGE: LXI D,USE$MSG
CALL PMESS
JMP CPM

; error routine, print message at (DE) and abort to CP/M

ERROR: CALL PMESS
JMP CPM

CRLF: LXI D,CRLF$MSG ; save some code here
PMESS: MVI C.PRTBUF

JMP BDOS

; using same input file name for output, keep name, make type = .DB

USE$SAME:
LXI H,FCB1
LXI D,FCB2
LXI B,9
LDIR ; move the name
XCHG
MVI M,’D’
INX H
MVI M,’B’ ; set type
INX H
MVI M,’ ’
RET

; messages

USE$MSG:
DB CR,LF
DB ’Usage: TXT2ASM <infile> [<outfile>]’,CR,LF
DB ’Converts standard text input file to DB format’
DB ’for assembly’,CR,LF
DB ’programs. <infile> is input text, optional ’
DB ’<outfile>is the’, CR,LF
DB ’output file. If no output file is specified, ’
DB ’output is sent’,CR,LF
DB ’to Cinfile name>.DB
DB ’[Oct. 9, 1982 VI.1]’, CR,LF,CR,LF
DB ’$’

NO$OPEN:
DB bell,‘Cannot open input file, check directory

and spelling. ’
DB CR,LF,’$’

NO$MAKE:
DB bell,‘Cannot create output file, check space

remaining. ’
CRLF$MSG:

DB CR,LF,’$’
NO$CLOSE:

DB bell,‘Cannot close output file, definite
problem here. ’

DB CR,LF,’$’
NO$WRITE:

DB bell,‘Cannot complete write to output file.
Disk probably full ’

DB CR,LF,’$’
NO$MEM: DB bell,‘insufficient memory for input file’.,cr,ff,'$’
IN$MSG: DB ’ lines input. ’,cr,lf,’$’
OUTSMSG:

DB ’ lines output.’,cr,If,’$’
LN$MSK: DB TAB,‘DB‘,TAB
MSK$LEN

EQU $ - LN$MSK

; byte and address storage

EOF$FLG: DB 0
FIRST: DB 0
IN$QUOTE:

DB 0
IN$PTR: DW IN$BUF
OUTfcPTR: DW OUTSLINE
OUT$DSK:

DW OUTSBUF
NUM$OUT:

DB 0
lLNCNT:

DW 0
OLNCNT:

DW 0

; file control block

OUTSFCB:
DB 0 ; drive
DB ’ ’ ; name (8 spaces)
DB ’ ’ ; type (3 spaces)

OUTFCBEX:
DS 30 ; the rest

; buffers

BUF$SIZE
EQU 16 ; 16 sectors for buffer

OUTLINE:
DS 80

OUTfcBUF:
DS 128 * BUF$SIZE

OBUFTOP
EQU $

IN$BUF: EQU $

ENDS
Lifelines/The Software Magazine, August 198324

Lifeboat handles
Tools for the Professional. . .

Lifeboat is the foremost supplier of professional tools for the software developer. We have the best
and the most, including:

• compilers
• interpreters
• linkers

• program editors
• cross-compilers
• emulators

• program generators
• graphics interfaces
• data base managers

and much, much moreWe have all the popular standards, plus the rare but indispensables, plus
some hot products that nobody else has, including:

Lattice™ C
The 16-bit C compiler that everyone's raving about: faster than the competition, more complete (full implementation of
Kernighan and Ritchie) and with a growing product baseOrder it with C Food Smorgasbord, a subroutine package
including screen and i/o utilities, IBM® PC BIOS utilities, and a BCD decimal arithmetic package. A complete develop-
ment system, and no run-time or license fee

Halo™
Add color graphics power to your favorite development language. Complete library of graphic primitives with interfaces
available for Basic, Basic Compiler, Lattice C, Fortran, Pascal, and Assembler. The emerging graphics standard for PC-
compatible systems

PLINK™-II, PLINK-86
Two-pass linkage editors allow you to create programs larger than available memory using complex overlays. Indispen-
sable for the developer of large applications programs

FLOAT87™
Supports the 8087 floating-point math chip for PL/I and Lattice C compilers. Real and
transcendental math functions execute over forty times as fast with greatly increased accuracy.
Math chip available

PMATE™, PMATE-86
The premier programmer's editor with a built-in macro language enabling
you to design your own text-processing functions. Customize it to work
just like your favorite word processor, then add more features

Lifeboat Associates
1651 Third Avenue, NY, NY 10028 • (212)860-0300

TWX: 710-581-2524 (LBSOFT NYK) • Telex: 640693 (LBSOFT NYK)

Panel™
Generates commented source
code for custom input screens
equipped with entry editing, up
to nine field attributes, up to 16
display attributes, plus provision
to add your own entry validation.
Includes terminal definition and
multi-key file maintenance sys-
tems. Code in PL/I-80, PL/I-86,
Pascal MT+, Cobol-80, Cobol-
86, Lattice C, MS Pascal, others
under development.

Lattice C. . . $500. C Food. . . $150.
HALO. . . $150 (one language).
PLINK-II. . . $350. PLINK86. . . $395
Float87. . . $125. PMATE. . . $195.
PMATE86. . . $225.Panel. . . $350.
8087 chip. . .$225.

OEM and dealer
inquiries welcome.

Prices and specifications subject to change without notice. Prices F.O.B. New York. Shipping, handling, C.O.D. charges extra. Lattice, TM Lattice, Inc. HALO, TM Media Cybernetics. IBM, reg. TM International Business Machines.
MS, TM Microsoft. Copyright © 1983 Lifeboat Associates. Programmer's Apprentice, TM PLINK and PMATB, TM Phoenix Software. Panel, TM Roundhill Computer, LTD. FLOAT87, TM Microfloat.

Hardware as Software:
The Hayes Smartmodem

by Davis A. Folger
Sitting somewhere in the never-
never land between computer hard-

the microcomputer. Some of the ap-
plications of the Smartmodem have

gram can address the Smartmodem.
From the user's perspective, the

ware and software sits the everpre-
sent, but generally transparent land
of firmware — software that is hard-
ware; hardware that is software. It's
everpresent because a microcom-
puter system will rarely be found that
doesn't have some firmware, disguis-
ed as ROM, hiding somewhere on
the system board. It's transparent
because the typical user rarely has to
think about it. ROM carries the
essentials — a cassette operating
system, a disc boot routine, some
machine language I/O, and, more
often than not, at least a little bit of
BASIC.

Except for BASIC, where it is im-
plemented, in whole or in part, in
ROM, this firmware is the machine's
software not the user's, and while the
user's software may address the
ROM for various I/O routines, the
user doesn't. This tends to be even
more true of ROM driven computer
peripherals like modems. The Hayes
Stack Smartmodem provides some-
thing of an exception to this general
rule.

Hayes Smartmodem can be address-
ed in two ways. First, it can be ad-
dressed directly through the key-
board when using virtually any
asynchronous microcommunica-
tions software. Second, it can be ad-
dressed directly by the program
itstx.. i-rom a programming perspec-
tive, one follows the other. Almost
anything that can be done through
the keyboard can also be done from
within a program.
The value of the Hayes Smart-
modem's programmability is in the
things it allows the user to do
without taking apart the modem and
resetting switches. Among the
things the Smartmodem can do
under program control are the
following:
• Dial a telephone number of any

length using either "touch-tone"
or "pulse" dialing formats (pulse
dialing signals each number in a
telephone number by the number
of clicks; touch-tone dialing
signals numbers using pitch).
Pulse and tone can also be com-

little to do with microcommunica-
tions.

It can, for instance, be used as the
major hardware component of an
automatic telephone dialer and ac-
counting system. Such systems are
highly useful to lawyers and other
professionals who must bill calls
back to clients. It can also be used as
the telephone control unit of a home-
built telephone answering machine.
The primary application of the
Smartmodem is, however, as a
"smart" modem that can be used
flexibly in a variety of microcom-
munications tasks. The key to the
Smartmodem's flexibility is in its two
modes. In on-line mode, the Smart-
modem acts just like any other
modem, sending and receiving data
under program control. TLc only dif-
ference between on-line mode on the
Smartmodem and other modems is
that the Smartmodem recognizes a
control sequence, set at the factory as
+++, but changeable under soft-
ware control, that signals the Smart-
modem to enter local mode.

Feature

bined in dialing a number.
• Enable the user to listen to the

connection being made.
• Answer the telephone on any

specified ring.
• Hang up.
• Advise the user of the status of a

connection through the computer.
• Change the control codes (line

feed, carraige return, backspace,
etc.)

• Vary the length of signals, pauses
and waits.

• Control echo, duplex and other
transmission characteristics.

This programmability gives the user
an unusual level of control over com-
munications. It simplifies the task of
writing high-powered microcom-
munications software packages. It
opens the door to microcommunica-
tions software that has more user
friendly features. It extends the
range of things that can be done with

The Hayes Smartmodem is a $279,
Bell 103 compatible, direct connect,
auto-dial, auto-answer modem that
operates at 300 baud (300 bits per se-
cond or roughly 300 words per
minute, take your choice). It also
comes in a 1200 baud version that
sells for $649. None of these descrip-
tors is particularly unique. There are
several modems on the market that
fit this general description.
The only thing that really makes the
Hayes Stack Smartmodem at all uni-
que is its ROM, its built-in software.
The Smartmodem is more than a
piece of hardware that attaches to
your computer through a serial port.
It is a piece of software — indeed, an
entire communications program-
ming language — that can be used by
the microcommunicator in the same
way that BASIC might be. Indeed,
the true flexibility of the Smart-
modem is probably best expressed in
the ease with which a BASIC pro-

Smartmodem enters local mode
under either of two conditions. First,
it enters local mode when it is turned
on and remains there as long as there
is no telephone connection. Second,
it can enter local mode during a con-
nection by simply entering the + + +
sequence. The ability of Smart-
modem to enter local mode while a
call is in progress is one of its
strongest features.
Local mode is the Smartmodem's
program mode. Any of the settings
can be changed here using a rather
simple command sequence. Typing
AT gets Smartmodem's attention.
Commands can then follow. There
are more than fifteen of these com-
mands, most of which are com-
plicated by additional parameters.
The sequence "AT D P 6558931 „„ T
6037895645;", for instance, would
dial a telephone number (D) using
(continuecf on page 36)

26 Lifelines/The Software Magazine, August 1983

feature What To Do At The A*-,
Which Your Dealer Never Told You
(or, Backing Up Disks For The Beginner]

by Al Bloch
In the two years I've been fielding
software support calls, by far the

mer who configured it for your par-
ticular microcomputer, threw in

software), and then to lock up the
original distribution disks in some

most prevalent scenario has been
something like the following: you
finally decided to take the leap and
invest in a personal computer, and it
arrived in fine working order, but
with no instructions other than the
notoriously cryptic Digital Research
documentation on the CP/M operat-
ing system. Or, your tried and true
familiar office Word Processor has
just been converted to run CP/M pro-
grams as well as the dedicated pack-
ages for which you originally bought
it. In either case, you may have pene-
trated the maze as far as inserting the
distribution diskette containing your
CP/M operating system and utilities,
properly oriented (which generally
means with the read oval, which you
NEVER, NEVER touch on either
side, inserted first, label last, with
the label towards the drive door —
not necessarily towards the operator!
My boss loves to observe that "there
are eight ways to put a disk into a
drive, only one of which is interest-
ing") and in the correct drive (almost
all machines in the market will
"boot," or bring up the system, from
only the drive labelled A — or
perhaps 0 or 1?). Now, you're staring
at the enigmatic "A>" which follows
the sign-on message.
What next? Which page of the
manual to turn to? How to start play-
ing with the juicy application pack-
age you bought the machine to run?
There are user-friendly programs
written to make this phase of opera-
tion easier, many of which have been
reviewed recently in Lifelines, but ex-
perience proves that ordinary mor-
tals with adequate instruction can
learn all that they need to know to get
the machine and software up in less
than half an hour, simply by using a
few of the tools which came with
your system.

The author of the CP/M operating
system (which, although not known
for friendliness, still bears consider-
able responsibility for the existence
of the industry), and the program-

some essential utility programs
along with the system itself. Many of
them the non-programming user of
the 1980s will never use, other than to
wonder what practicality might lurk
behind such names as DDT or XSUB;
but a nodding acquaintance with a
few of them will confer the necessary
competence and rewarding confi-
dence in handling disk files which
will transform the neophyte's fear of
the machine into an infectious and
addictive delight. You can begin to
get acquainted with these new
friends by name by typing dir (upper
or lower case, it makes no difference)
after the A>, and sending the com-
mand by hitting the ENTER or CAR-
RIAGE RETURN key on the right
side of the keyboard (hereafter in-
dicated by <cr>), to get a DiRectory
of the files on the disk which came
with the machine. You will notice
that generally they show both a first
and last name (they all have a "mid-
dle name" consisting of a period (.),
but this is not displayed in the DiRec-
tory — we will learn how to use it
later), and that the most common
"last name" is COM. These files may
be thought of as COMmand pro-
grams, sitting there on disk ready to
do whatever they know how to do
when you call them by their first
name. We will use just a handful of
them to get you started doing what
you really want to do, use the ma-
chine.

safe place against the day when
you'll need an update to a newer ver-
sion. Almost all vendors will require
the original to be returned to qualify
for that important service, to prove
ownership; the authors are under-
standably paranoid about piracy!
The goal of the present exercise is to
create with your own hands a disk or
disks containing a verified, clean
copy of whatever software is of im-
mediate interest, along with the sup-
port programs which it requires —
perhaps a language file, certainly the
operating system which relates it to
the machine (so as to avoid having to
switch disks between boot-up and
operation, which is a distasteful pro-
cedure to CP/M). I'll assume that
your machine has at least two disk
drives, and that you are equipped
with a moderate supply of blank
disks (without which it is just a con-
versation piece, like a typewriter
without paper). Unless you're using
the DEC Rainbow or an NBI or Dic-
taphone word processor (which re-
quire you to buy preformatted disks
from the company), our first step is to
write onto any disk we'll be using the
proper pattern which allows your
particular machine to recognize the
disk as its own. (There are at least a
hundred mutually incompatible disk
formats in the 5%-inch realm, and a
handful in the eight-inch, one of
which — single-density, single-
sided, soft-sectored — is the industry
standard exchange format used by
over a hundred different microcom-
puters.) Anyhow, our first step will
be to type:

A>FORMAT<cr>

thus calling the program listed on the
DiRectory as FORMAT.COM. (If
you're on a Xerox computer, the file is
called INIT instead; on the Wang
machines it is called INITDISK, and
subsumes the next command, SYS-
GEN, as well. OKI calls if FDDUTY,
and it works differently.)
FORMAT will sign on and ask you a

(continued on next page)

For security purposes, the first step
is to T>ack up' whatever disks you've
received, whether CP/M system,
programming languages, or applica-
tions packages. In contrast with
lesser game machines, NO software
available under CP/M (at least as far
as I've heard) comes copy-protected;
on the contrary, you are expected to
make copies immediately (only
enough for proper use on your own
machine, please, in accord with the
license agreement, unless of course
we're talking about public domain

Lifelines/The Software Magazine, Volume IV, Number 3

question or two; don't be scared to
play with various responses. (You
can almost always back out of
whatever you're into over your head
by typing CONTROLrC (henceforth
indicated by tC), using the CON-
TROL key as you would a shift key to
get upper-case letters, once you've
located that important key; it's usual-
ly on the left of the keyboard, and
several recent machines make it a dif-
ferent color. Wang calls it GL, many
others call it the CODE key.) FOR-
MAT will at least ask you to identify
in which drive the blank disk is to be
found which we want to FORMAT;
generally it's quite all right to insert it
into B. (If you get into trouble later,
with scary error messages such as
'BDOS Error on A: Bad Sector', you
might want to come back to this point
and FORMAT disks in A; if things
work better this way, it will imply
that your two different drives are
aligned sufficiently differently that
they can't read the same disk, and it's
time to get them both aligned — this
is routine maintenance for all ma-
chines, somewhat like changing oil
and spark-plugs in your car.) FOR-
MAT generally has a repeat loop built
into it, so that you can FORMAT
several disks without reloading the
program; so don't be frustrated if it
asks you the same question again
after you think you've succeeded. If
the program asks about which densi-
ty or how many sides of the disk you
want to FORMAT, it's generally all
right to go for the maximum allowed,
IF the blank disks you're using are
rated for it. If FORMAT complains
about being incapable of finishing a
particular disk satisfactorily, try once
more, reseating the disk carefully in
the drive, and then reject the disk; if
that happens several times in a box of
disks, take them back to the dealer
and request another brand. (I've
heard nothing but good about
brands such as BASF, Dysan, and
3-M Scotch, but there are probably
several other equally reliable
brands.)

After we've FORMATted as many
disks as we wish, we can generally
get back to the A> (which already
looks less formidable, doesn't it? It
simply means YOUR TURN) by hit-
ting the RETURN key (<cr>). Our
next step will be to write a copy of
your operating system (the program
which allows all the other programs

to get along with your machine) to
one or more of the disks we've FOR-
MATted, using a utility which is
almost universally known as

A>SYSGEN<cr>

(Hewlett-Packard users won't find
one; they will accomplish the same
thing by using COPY with the
SYSTEM option instead of ALL, and
please be sure to set VERIFY to YES!)
SYSGEN will ask you the source
drive name, which is almost always
A (since only the disk in drive A
presently contains the system), and
the destination drive name, usually
B; it will ask you to hit <cr> after each
of the above entries, to allow you the
opportunity to change disks in the
drives if desired until the proper one
is in each. (If you decide to FORMAT
in A, you should use A also as the
destination drive, for the same
reason.) SYSGEN also has a repeat
loop built in, so that you can write
the same copy of the system onto
several disks at a sitting. Again, don't
panic when you are asked again for
the destination drive name; just give
it a <cr> when you've run out of
FORMATted disks, to return to the
A>. (Generally it costs you nothing
in disk space overhead to write the
system onto any disk you will be us-
ing — on most disk formats it sits on
the outer two tracks of the disk,
which are reserved for it so that it's
not competing for precious file space
— and it adds to your operation the
flexibility of being able to "boot up"
from any disk which happens to be in
the A drive.)
At this point, if you type DIR B: to
get a DiRectory of the files on the B
disk, you will see NO FILES on
almost all machines (the Wang,
among a few others, writes a system
file into the directory); the implica-
tion is that the operating system is
not a directory file, and the corollary
is that you cannot discern which
disks contain it by looking at their
DiRectories; the standard way is to
put the disk in question into the A
drive, reset the machine, and see if it
boots.

Now to put some good stuff on the
disk which we've FORMATted and
SYSGENned; for this we'll utilize the
third and last of the CP/M utilities
you really need to learn in this
session,

A>PIP

(The Cromemco system CDOS calls
it XFER. There are compelling but
complex reasons for preferring it to
COPY, which most machines offer as
well, unless there's no alternative.)
First off, let's back up your distribu-
tion system diskette; it contains a
good number of utilities you won't be
using frequently, but it's still a good
idea to have some good copies
around, to preserve the original.
Here's where it gets a bit cryptic for a
little while; but after a few minutes of
using PIP, you will feel less in-
timidated by its syntax and options.
Thousands of users have picked it up
with minimal trauma. The command
which we will now type at the A> is

PIPB: = A:* . *[VO<cr>
(or PIP /V B:=A:* . *<cr> if you're
using the supercharged CP/M
known as SB-80; the major dif-
ference of interest is where the verify
option comes), and it's not as bad as
it looks. For a start, PIP is totally in-
sensitive (at this stage) to case; upper
or lower will do equally well,
although file names are generally
displayed by DIR in upper case.
Next, notice that there is precisely
ONE space in the command line, bet-
ween PIP and B (two in SB-80,
around the /V); more or less can
screw things up. What this command
means is, "instruct the PIP command
to create on the B: disk (the destina-
tion in this case) a copy of every file
on the A: (the source) disk, and
verify each file for accuracy." The
* . * part uses the asterisk as a "wild
card," to request transfer of 'all files
with any first name, and all files with
any last name', which boils down to
all the files on the disk; you may
think of the period as the mandatory
middle initial for every file name,
although it doesn't appear in a DIR
listing. The [VO part (with or
without a closing] — it makes no dif-
ference in this case) requires verifica-
tion of all files and thorough handl-
ing of object code files, which on
some machines could be truncated
by PIP in the absence of the O behind
the bracket; in any case it's a good
habit to get into, since you never care
enough to move a file around with-
out being concerned that it get there
in one piece. (SB-80 requires no O
option, just /V.)

28 Lifelines/The Software Magazine, August 1983

This command will start a series of
file moves and verifies; each file
name will appear on the screen as it
is being handled, so that if there's
any trouble reading a particular file
you'll know which one needs atten-
tion. PIP will complain with an error
message (see below) if necessary,
after retrying a troublesome spot ten
times; if no trouble arises, our
familiar A> will appear at the end of
the list after the last file is successful-
ly PIPped.

Making working disks
But everything we've accomplished
so far is routine housekeeping; the
real fun stuff is yet to come. The
payoff is when you can bring up the
application you want to run off of a
disk which you've made yourself.
The application disk will still need to
have been FORMATted and SYS-
GENned, and we will still use PIP to
put it together, but we will be more
selective as to which files we carry
over; no need to fill up the disk with
rarely-used system utilities. In this
case, we'll want to get inside PIP. Let's
insert another prepared disk in drive
B, and announce its presence to the
system by control-C; now, if you type
at the A> PIP<cr> alone, you'll get an
asterisk prompt at the beginning of
the next line on the screen, after
which everything proceeds as before
with the omission of the space which
followed PIP in the one-line form of
the instruction. Let's tell the asterisk,
*B: = A:PIP.COM[VO
(!/V B: = A:PIP.COM if under SB-80),
which uses PIP to move a verified
copy of itself onto the B: disk; and
after that's through and you get an-
other * (or !), B: = A:STAT.COM[VO,
which moves over the other CP/M
utility you'll be using every hour; PIP
moves things, STAT shows you how
big they are (among other uses). (On
the Lanier, you'll want to copy
FMTSEL.COM as well.) At the next
prompt, a <cr> will get you back
home to the A>.
Now, a DIR B: will indicate that both
PIP.COM and STAT.COM have in fact
been added to the disk in drive B,
which we are building up to be your
application disk. (Remember that it
was first FORMATted, and then
received a copy of the operating
system via SYSGEN.) Let's remove
the original or back-up system disk

we've been using in A, put it away
safely somewhere, and (here comes
the tricky part!) insert the disk from
B into drive A; we'll be booting off of
it from now on. You should also in-
sert into drive B the original
distribution disk of whatever ap-
plication package (or at least one of
them) you want to install on the
working disk, and then reset the
machine. This is frequently ac-
complished by pressing a black but-
ton on the back (or side) of the box, or
perhaps a special combination of
keys from the keyboard; a few ma-
chines (including the Wangwriter,
NBI and A. B. Dick) require you to
turn the power off and on again
(usually after a cooling off period of
ten to 15 seconds) to accomplish this
function, known in computerese
jargon as a cold boot. (If this is your
case, please learn immediately to
NEVER, NEVER turn the power
switch or key on or off with disks
engaged in any drive; at least open
the drive door to retract the write
heads first, to avoid the transient
power surge from the switch which is
notorious for zapping disk files! Of
course, you'll want to close at least
the A drive door fairly promptly after
turning the power back on, so that
the system can be booted from that
disk.) This is a case in which CP/M is
designed to take care of you perhaps
beyond your wishes. If you try to
write to a disk which was not in that
drive at the time of the most recent
boot-up, you will usually be treated
to the impressive message, 'BDOS
Error on A (or B): R/O', which tells
you that CP/M has decided to label
that disk Read-Only (even though it
is not write-protected physically),
since it is not the one it expected to
find there. (This second, less radical
reset function could be performed
equally well with a 'warm boot', the
escape-hatch CONTROL-C men-
tioned above under FORMAT.)

Anyhow, if we type A>DIR at this
point, we should see only PIP.COM
and STAT.COM on the A: disk,
which is as expected; DIR B: will
display the DiRectory of the files on
whatever disk you have in drive B.
Presuming that the A disk has
enough room for all of them, you can
copy them all with full verification by
typing

A>PIPA: = *:B* . *[VO

(orPIP/VA:=B:* . * if under SB-80);
note that this time, in contrast to the
full system distribution disk back-up
defined above, A is the destination
drive, and B is the source. Once more
PIP will list on the screen each file be-
ing moved, and the A> will appear
when and if the disk is completely
copied. An error message after a par-
ticular file name at this point might
be either TDOS Error on B: Bad Sec-
tor', indicating that the system is hav-
ing trouble reading that file on the
source drive; in this case you may be
able to get through by hitting <cr>,
requesting PIP to continue (remem-
ber which file it was, though — it may
turn out later to be unusable, in
which case it should be remade). The
other common error is likely to be
'BDOS Error on A: R/O' or 'Write Er-
ror', which probably means that
you've run out of room on the disk in
A. You can confirm this easily by
typing A>STAT<cr>; if STAT reports
'drive A: Ok' it doesn't mean that
everything is okay; it means that
drive A has zero k (short for
kilobytes, or 1024-character size units
— the CP/Mefs dozen) left to write
to. If this is the case, the DiRectory of
disk A will probably show as its last
entry a file with a last name' of $$$,
indicating a sick or incomplete file;
you can clear it off by typing A>ERA
A:* . $$$<cr>, which will ERAse all
files on A: with the $$$ last name.
(Some systems use DELete instead of
ERAse.)
But let's assume that neither of the
above calamities has befallen, and
your PIP * . * has run to completion
as indicated by the friendly A> at the
end of the file list. If (a.) the program
you're trying to install came on more
than one original distribution disk,
and (b.) the disk format you're using
on your machine has enough room
left on A as indicated by STAT, you
may well be able to copy over most (if
not all) of another original disk by
simply inserting it into drive B and
repeating the previous PIP com-
mand. In this case no reset is re-
quired, since the disk we've changed
in the drive is only being read, not
written to.
Application software
requiring a support
language
The final interesting wrinkle in the

(continued on next page)
Lifelines/The Software Magazine, Volume IV, Number 3

AXRUN238 HELLO<cr> every
time they want to run HELLO), it's
far simpler to rename the file while
moving it over to the application
disk, by typing
A>PIP A:RUN.COM = B:CRUN238.
COM[VO<cr> or whatever variation
thereof may be called for, after which
the application may be invoked by
typing A>RUN HELLO<cr>.

Summary
Step 0.) Never turn machine on/off

with disks engaged in
drives!

Step 1.) Insert distribution system
disk in drive A, blank in B.
a.) A>FORMAT<cr> blank

disk(s), answering a few
questions.

b.) A>SYSGEN<cr>
system onto blank(s);
source A, destination B.

c.) If backing up entire
system disk,
A>PIP
:B:=A . *[VO<cr>
If creating an applica-
tion disk,
A>PIP<cr>
*B: = A:PIP.COM[VO
<cr>
*B: = A:STAT.COM[VO
<cr>
*<cr> to return to
A>

Step 2.) Remove distribution
system disk from A; insert
disk from B into A; insert
desired original into B.
RESET. (If language need-
ed, insert it first in B; if
CBASIC,

A>PIP A:RUN.COM =
CRUN238.COM[VO
<cr>)
A>PIPA: = B:* . *
[VO<cr>

Reading the above, followed by a few
minutes' experience at the keyboard,
will certify you a qualified disk
backer-upper; now you're ready for
the next challenge, actually trying to
run whatever application is your in-
terest. That's another story. . . . B

Microsoft, the author, not Modern.)
It is a modest stretch to your rapidly-
developing back-up skills to conceive
of typing

A>PIP A:MBASIC.COM =
B:OBASIC.COM[VO<cr>

which will instruct PIP to pick up the
OBASIC file (only) from the B disk,
and copy and verify it to drive A
under the name MBASIC. Of course,
if you're running a current Peachtree
release, you'll want to move over
MBASIC unrenamed to run it, unless
you get the already compiled version
of the software, which runs much
faster and requires no interpreter
support. Many other authors also
distribute programs written in
MBASIC, which need the language
to make them run (unless they're
compiled, in which case you may
need, from either the author or a
vendor, BRUN.COM).

CBASIC applications
The other prominently popular sup-
port language is CBASIC, a pseudo-
compiler (don't worry now about
what that means) famous for its two-
letter error messages (such as ER-
ROR OM — the primary reason most
users need the manual for the lan-
guage is to look up error codes, about
which they can usually do little,
since many more people run pro-
grams written in CBASIC than ac-
tually do original programming in
it). The distribution disk comes with
five .COM files on it (three if you are
on a new-generation 16-bit machine
under CP/M-86 and buy CBASIC-
86), only one of which is needed to
make the software come alive. De-
pending upon your version of oper-
ating system, the file you want is
called
SYSTEM VERSION CBASIC FILE
Turbo-Dos, SB-80,

dr CP/M version
2.2 or 3 CRUN238.COM

MUON, CDOS, or
CP/M vers. 1.4 CRUN2.COM

(or maybe the
earlier CRUN2O4P.COM)

CP/M-86
(16-bit only) CRUN86.COM

However, since all these names are
complicated to type correctly, and
the language file must be called
before the application (imagine ask-
ing all your secretaries to type

back-up exercise is the situation in
which the package you want to run
needs the programming language in
which it was written to be present on
the disk in order to run; this is usual-
ly the case with applications written
in either the CBASIC or MBASIC
dialects of the BASIC language. One
or the other of these languages is fre-
quently given away with recently
marketed machines (or are they
charging you for the software, and
giving away the hardware?); but if
what you want to run needs the lan-
guage and you don't own a copy, you
should order it along with the ap-
plication (NOT mooch a copy from
your neighbor, even if his machine
reads the same disk format; that
could constitute him a pirate, and
potentially liable for prosecution!).

In this case you will receive, as well as
the application disks, a separate disk
containing the language itself; it may
be backed up as previously describ-
ed, but specifically one file from the
language disk must be added to our
application disk. Here is an oppor-
tunity to use one last feature of PIP,
that of renaming a file while moving
it (although this may also be ac-
complished by PIPping as above,
followed by RENaming newfile.
nam = oldfile.nam at the A>).
Let's say you want to run one or more
of the early generation Peachtree ac-
counting modules, which some ven-
dors are still unloading at bargain-
basement prices, although they have
since been rewritten in a more
modem version of BASIC. You'll
need, in addition to your Peachtree
disk, BASIC-80 from Lifeboat (unless
somebody else is still providing the
earlier version of the language),
which contains, in addition to the
current version 5.21 of the interpreter
(MBASIC.COM on the disk), the
classical 1977 version 4.51, listed as
OBASIC.COM. Due to the nature of
the enhancements to the language
between the versions, software writ-
ten under the earlier version won't
run under the later. The hidden 'got-
cha' here is that when the software
was written, OBASIC was called
MBASIC, and under some cir-
cumstances the software may come
up looking for the language file
under that name! (O may be thought
of as indicating Old, but M means

Lifelines/The Software Magazine, August 1983

YOU SPENT $4,000 ON
A PERSONAL COMPUTER

FOR ANOTHER $12.50,
YOU GAN GET

YOUR MONEY’S WORTH.

No matter what you need
it to do.

More importantly,
LIST contains the LIST
Software Locator™ a com-
prehensive guide to over
3,000 personal computer
programs—conveniently
indexed by application,
industry, operating system
and hardware. You’ll find
detailed descriptions of
applications software that
pertains specifically to the
type of business you’re in.
And the type of needs
you have.

LIST is sold at leading
computer stores and book-
stores. Or, you can phone
our toll-free number (1-800-
821-7700, Ext. 1110) or
send in the coupon below,
and receive a copy by mail.
The price, exclusive of
postage and handling, is
$12.50.

Which, when you think
about it, is a pretty small
price to pay for something
that can maximize a much
larger investment.

LIST is published by
Redgate Publishing Company,
an affiliate ofE.F. Hutton.

And the software pro-
grams available to business
and professional people
number in the thousands.

But where do you go
to find them?

Today’s personal com-
puters have an extraordi-
nary range of capabilities.

Fora
variety of
reasons,
however,
many busi-
ness people

are unaware of just how
much their computers are
capable of.

As a result, they aren’t
realizing the full potential of
their investment.
THE KEY TO GREATER

PRODUCTIVITY IN A
WORD: SOFTWARE.

Computers do the
work. Software does the
thinking.

Expanding the amount
of work a personal com-
puter can do is merely a
matter, then, of gaining
access to a broader array
of software.
© 1983 Redgate Publishing Company.

All rights reserved.

THE KEY TO SOFTWARE
IN A WORD: LIST.
LIST is the first pub-

lication that
puts software
first.

It contains
articles by som<
of the most
respected
names in the
computer field.
Written to help
you get the
most out of your
personal com- :
puter. No matter • a
what brand it is. I®

F I’D LIKE TO GET THE MOST OUT OF*
MY PERSONAL COMPUTER.

I Please send me ---------- copies of LIST at $12. 50 a copy plus $2. 00
I each for postage and handling. (Tax will be added where applicable.)

VISA MasterCard (Interbank No)

Card No Exp. Date

Signature---

Print Name--

Address ---

City --------------------------------- State ----------- Zip-----------
I Send to LIST, Redgate Publishing Co. , 3407 Ocean
I Drive, Vero Beach, FL 32960.
I Or phone, toll-free: 1 800 821-7700 Ext. 1110

LIST
__ __ The Software Resource Book _

For Personal Computer Users

31Lifelines/The Software Magazine, Volume IV, Number 3

Users Group Corner“jji

68XX, Forth Systems, Osborne,
Disabled Interest Group, Personal
Investment, Atari, Heath, Texas In-
struments, and South Bay Commo-
dore.

CPMUG
1651 Third Ave.
New York, NY 10028
The CP/M Users Group's last five
volumes, 86-90, contain a package
entitled "Businessmaster II" which
includes programs for inventory/fix-
ed asset accounts, mail list, payroll,
purchase order/payables, order en-
try/receivables and general ledger.
The programs are written in CBASIC
2. An updated version of Business-
master II is sold commercially and
this older version has been put into
the public domain. CPMUG now has
KAYPRO format available. Price is
the same as North Star and Apple
formats.

newsletter is entitled Northern
Bytes.

TRS-80 Users Group
Gebruikersvereniging Afdeling
Rotterdam, Havikhoek 48,
3201 Spijkenisse, Holland
The TRS-80 Users Group has a goal
to stimulate the use of TRS-80s. They
have compiled a small library of
selfmade software. They are inter-
ested in getting closer contact with
other groups to exchange: software,
hardware layouts, newsletters and
anything that can be done together.

ACSCI SWAP
P.O. Box 28606
Columbus, OH 43228-0606
The Amateur Computer Society of
Central Ohio has the following users
groups: Osborne, ACE (Atari
Comp),Timex/Sinclair,COACH (Ap-
ple Users), TRS-80 COLOR, TRS-80
Users, Kaypro, Pet Users, CP/M
Users, and ROBOTICS Group. Their
newsletter is entitled I/O.

PLUMB
PO Box 300
Harrods Creek, KY 40027
PLUMB (probing the world of per-
sonal telecommunications) is in-
terested in computer bulletin
boards and personal telecom-
munication. PLUMB tells micro
users how they can plug into free
software, personal message systems,
online gaming systems, and x-rated
bulletin boards and services that ap-
peal to people who work at home
with their computers. Its newsletter
is $20 a year.

San Diego Computer Society
P.O. Box 81537
San Diego, CA 92138
The SDCS maintains a Community
Bulletin Board System for use by its
members. Dues are $15 per year.
Renewal is $10 per year if received
before the expiration date.The SDCS
special interest groups include the
following: MicroComputer Innova-
tors (Z-80, CP/M, PASCAL, S-100),
TRS-80, Commodore, Robotics,
dBASers, Kaypro, Exidy, IBM-PC,

Editors Note: We hope you will write in
and give us information about your users
group or computer club. Our Users
Group Comer is designed to help all of
you readers find computer clubs in your
area or new clubs that your existing club
can exchange information with.

KAPPA
P.O. Box 1563
Gulf Breeze, FL 32561
The KAYPRO Association of Profes-
sionals, Programmers and Analysts
is starting a exchange program with
other groups. They will maintain any
KUG on their mailing list from
whom they receive a newsletter,and
will share their public domain soft-
ware with any group on an exchange
basis or for $5 per disk (to groups on-
ly). As of this writing KAPPA has
nearly 30 user groups on their list.
(This may be a good way to find a
KAYPRO Users Group in your area.
If you write for information be sure to
include a self addressed stamped
envelope.)

CJPC
Computer Systems Labs., Inc.
808 Shrewsbury Ave.
Tinton Falls, NJ 07724
The Central Jersey IBM/PC Users In-
formation Exchange has just been
formed. Some of their goals include:
to serve as a center of information ex-
change for PC users, to provide an in-
formation exchange concerning
hardware and software options for
the PC, to provide a "Clearing
House" of latest new information,
and to provide an exchange between
experienced and new users for ap-
plication ideas.

Microcomputer Users International
c/o Jack Decker newsletter editor
1804 W. 18th St. Lot #155
Sault Ste. Marie, MI 49783
The MUI is a group that serves the
microcomputer users of Sault Sainte
Marie (USA and Ontario, Canada)
area. They are interested in exchang-
ing newsletters with other computer
clubs and user groups. The MUI

Software in the library, obtainable ex-
clusively on diskettes, is available for
a prepaid media and handling
charge, as follows:

FORMAT
8" IBM
8* IBM

North Star/Apple
North Star/Apple

DESTINATION
U.S., Canada, Mexico—$13
All other destinations—$17
U.S., Canada, Mexico—$18
All other destinations—$21

PLEASE CLEARLY SPECIFY THE FORMAT
YOU WANT WITH YOUR ORDER

This payment covers the cost of the
diskette(s), packaging, and postage.
Domestic shipping is via UPS where
a full street address is given; all other
orders are via U.S. Postal Service.

NAMU
711 W. 14th St.
Austin, TX 78701
The National Association of
Microcomputer Users completed the
first issue of its newsletter in May
1983. Its dues are $25 a year which en-
titles you to a free subscription to the
newsletter. NAMU's goal is to bring
together all the components of the
microcomputer industry. H

32 Lifelines/The Software Magazine, August 1983

Macro Of The Month by Todd Katz
PMATE, our text editor of choice, is
also a structured language inter-
preter — and a sophisticated one at
that! This month the SUPERDIR
macro illustrates a small portion of
the power inherent in the PMATE
language and challenges MICRO-
SOFT'S MS-DOS 2.0 in what will go
down in history as the great "Disk
Directory Sorting Contest."

This month's macro also makes an at-
tempt to combine two longstanding
M. of the M. goals: an alphabetized
directory and a columnized direc-
tory. It addition it makes it possible
for you to perform standard I/O
operations on disk files without hav-
ing to go back to PMATE's command
line.
SUPERDIR also pays Ron Finley of
Technical Services, Co., Harley,
Oregon the highest MACRO of the
MONTH complement: we have
taken his macro and incorporated it
into our own.
Mr. Finley writes, "Way back in the
January, 1982 issue of Lifelines you
complained of the slowness of the
sorted directory macro in the PMATE
manual. As an alternative, you pre-
sented a macro to produce an un-
sorted, four-column directory. I
decided that I still wanted a sorted
directory macro, and since I have
seen only the one in the (PMATE)
manual, I wrote another myself."
Indeed, the binary sort in the
SUPERDIR program is very fast, and
it can be run independently of the
rest of the macro. The sort performs a
simple function: alphabetizing the
directory and listing it on the screen.
In addition, wild cards are available
so that you could, if you load SUPER-
DIR into the Z.DZ permanent macro,
type Z.D*.COMZon the command line
to get an alphabetic listing of all
Z.COMZfiles on your logged-in drive.

Mr. Finley mentioned that he was
getting error messages when using
the wild-card option, however the
1QA command, which limited the
number of macro arguments to one,
seems to eliminate this problem.

;sortdir July 4, 1983 1.0
80f ; set screen for 80 columns
I ; begin loop #1

I ; begin loop #2
t ; tag cursor
bkb6kb7k ; kill buffers 0,6,7

$Ogthinking somewhat slowly$; flash message
; this section contributed by Ron Finley

belqa ; buffer 0 edit

xLtAA$
; #of macro arguments to one
; list directory

; NOTE: the tAA makes it possible to specify wildcards when you call this macro!
99qa ; set # of arguments to 99
ab7k$; top of buffer, kill b7
1v0 ; setvar. 0to1
[; loop No. 3

@t = 0_ ; if a null is found exit loop
b7e ; edit buffer 7
1v1 ; set var. 1 to 1
@0v2 ; setvar. 2 equal to var. 0
(; loop No. 4

@2 = @1_ ; if var. 2 = var. 1 exit
((@2-@1)/2)v3 ; subtract var. 1 from var. 2

@1va3

; divide by 2 and assign
; to variable 3
; increment var. 3 by var. 1

a ; go to top of directory
(@3-1)L ; subtract 1 from var. 3

@htA@0$>0
; move that # of lines forward
; compare string in buffer 0

I

; to string where cursor is
; if greater than 0
; enter loop No. 5

@2 = @3[; IF var. 2 = var. 3
- 1va3] ; subtract 1 from var. 3

@3v2 ; set var. 2 = var. 3
][; ELSE
@1 =@3[; IF var. 1 = var. 3

va3] ; increment var. 3
@3v1 ; set var. 1 to var. 3
l ; end loop #5

] ; end loop #4
a ; go to top of buffer
(@1-1)L ; move var. 1 - 1 lines
@htA@0$>0[][; compare string in buffer 0

L]

; to string at cursor
; IF greater than 0 go on
; else move forward a line

be ; enter buffer 0
b7n ; insert line to buf. 7
vaO ; increment buffer 0

l ; end loop #3

16v1
; end Ron Finley’s contribution
; setvar. 1 to 16

b7e ; enter buffer 7
z ; go to end of buffer
@lv2 ; set var. 2 = to #

@2<20[5v0]
; of lines in file
; set var. 0 to 5 if

(@2>19) &(@2<40)[
; less than 20 lines
; if var. 2 is between

7v0]
; 20 and 39
; setvar. Oto 7

(@2>39) & (@2<66)[; if var. 2 is 40-65

(continued on next page)
33Lifelines/The Software Magazine, Volume IV, Number 3

Although sort times will vary de-
pending on the speed of your com-
puter and the number of items in the
directory, we got quite respectable
10-second marks for 30-item
directories.
Intriguingly, Mr. Finley adds, "While

(my sort) is certainly not the fastest
method possible, I have found it to be
adequate for my needs. . . ."
Question: What is the fastest method
possible?

SUPERDIR does two other things:
1. It displays the directory in a five-
column format, thus assuring that all
the files on the disk can be seen on
one screen. The alphabetical listing is
vertically oriented, which we believe
to be easier to read than the horizon-
tal alphabetical listings found on so
many sorted DIR programs.
2. Having placed SUPERDIR on the
screen, a micro menu appears on
PMATE's command line that reads: F
for Fetch; P, print DIR; I, insert; V,
view; X, delete; S, set drive; E, to exit.
To perform any of these operations,
detailed below, you just point your
mouse or move your cursor to the
beginning of the name of the file you
want acted upon. Then press the ap-
propriate command key — F,P,I,V,X,S
or E. Lower case can be used too.
Briefly, here is what each of these
functions do:
F "XFs" the file, logging it into the

system. This will only work if you
are not already logged onto
another file. If you are, the macro
will abort without harming the
file being edited.

P Sends (XTs) the contents of buf-
fer 6 — which should be the
SUPERDIR — to your printer.
This is a painless way of typing
the contents of a disk on a
diskette label.

I Inserts (Xi's) a file at the end of
the text editing buffer. In this way
you can merge several files
through the SUPERDIR menu —
bearing in mind that you must
live within available RAM.

V Allows you to view a file for as
long as you wish. Press any key
to return to the SUPERDIR and
its menu.

X Deletes (XX's) a specified file
after making sure that you want
the file deleted by insisting that

11v0] set Var. 0 to 11
@2>65[ifvar. 2 is >65

18v0] set var. 0 to 18
aii$ go to top of buffer
@0L move down var. 0 lines
27iiAL$ insert “$AL” (ESC)
5[do loop #3 five times

@0[do loop #4 var. 0 times
to format columns

@1 \ insert var. 1 (indent amt.)
IQXI$ insert OX I commands
L-m go to end of line
32i27i“Li insert “ $L”
L move one line

] end loop #4
@t = 0_ if null exit loop
27iiaL$ insert “$AL”
16va1 add 16 to var. 1

] end loop #3
a go to top of buffer 6
m move
“<i13i insert “<” and return
@0L move var. 0 lines
“>i insert “>” end marker
bte enter text buffer
tf tag point and reform
.7 execute buffer 7

which inserts sorted
directory in text buffer

change tag and cursor
(@0 + 2)L move var. 0 plus 2 lines
#b6d append directory to buffer 6
exchange tag and cursor
1L move one line forward

options menu
[begin loop #3

qbqdqb ring bell twice
GF for Fetch ; P print DIR ; I insert ; Vview ; X delete ; S set drive ; Etoexit$

place menu on command line
t tag position
estS$ search for terminator
#B9c copy string to buffer 9
@k = (“S!”s){ if choice is “S” or “s'

gwhich drive?$ ask question
@k = (“A!”a){ IF answer is “A

xsa}{ log into drive A
xsb} ELSE log into drive B
es>$ search for directory end

-(@0 + 1)k delete var. 0 + 1 lines back
— exit menu loop

and go to beginning of macro
} end “S” loop

@k = (“V!”v){ IF choice is “V” or “v”
bkbe empty and enter buffer 0
xitA@9$ insert file whose name

is stored in buffer 0
qra redraw screen and go to top
3{qbqd} ring bell three times

gpress any key after viewing$; flash message
btet enter text buffer return to menu

} end “V” loop
@k = (“X!”x){ IF choice is “X” or “x*

exchange tag and cursor
ghitXto deletes flash message

@k=“X{ IF“X” begin No. 2 loop
Ogbye-byeI$ flash message
xxtA@9$ delete file name in buf. 9
“xi insert “x” before file name

t return to command menu
} end No. 4 loop

} end X loop
@k = (“PI”p){ IF choice i s “P ”o r “p ”

b6e enter buffer 6
xt$; print buffer

Lifelines/The Software Magazine, August 1983

you type a second capital "X."
S Set or select (XS') a drive. Gives

you an opportunity to switch
PMATE to another logged in
drive and does a SUPERDIR on
that drive so that menu opera-
tions may continue.

E Exit the macro.

You are probably wondering how
many days all this will take. Actually,
thanks to the Finley binary search,
the speed is quite respectable. With a
32-entry directory running on a 8086
MS-DOS system, we were able to get
a sorted, alphabetized SUPERDIR in
15 seconds!
How does this compare with a
sophisticated operating system like
MS-DOS 2.0 on an 8086? Well, get-
ting a sorted, columnized directory
listing in MS-DOS requires that the
program SORT.EXE be on the disk.
Then, using UNIX-like pipes, you
type "DIR/W |SORT<RETURN>.
The /W asks that the directory be
placed in four columns so it does not
scroll off the screen. I tried this on a
54 entry directory on a Wang PC with
MS-DOS 2.0. DOS grinds away for
awhile — apparently attempting to
sort the items on disk rather than in
memory — and comes back about 75

btet
t
}

@k = (“ l !” i){
Oginserting file$; flash message

z
131
xitA@9$
qrqd
a
t

}
@k = (“E!”e){

°/o
}

@k = (“F!”f){
xk
XftA@9$

a
ft
°/o

}
]

1
1

seconds later with a columnized,
sorted directory. Wait a minute —
that's not alphabetical order. Oh
well, back to the drawing board.
Given the same task PMATE and
SUPERDIR.MAC managed to col-
umnize and sort the same 54 item
directory on the same computer in

; enter text buffer
; return to menu
; end P loop
; IF choice is “I” or “ i ”

; go to end of file
; insert <RETURN>
; insert file help in buf. 9
; redraw screen and display
; return to top of buffer
; return to menu
; end I loop
; IF choice is “E” or “e”
; end macro
; end I loop
; IF choice is “F” or “f”
; clear screen
; assign primary file to
; file help in buffer 9
; go to top of buffer
; format file
; exit macro
; end F loop
; end loop #3
; end loop #2
; end loop #1

about 18 seconds. And sure enough,
it was alphabetical.

Incidentally, in a compacted form,
SORTDIR occupies only 750 bytes.
The highly commented stuff listed
here with lots of spaces, tabs and car-
riage returns takes much longer than
18 seconds to execute. H

Product Status Reports -- -
New Products

INDEXED RELOCATABLE
LIBRARY _________________________
Active Software Marketing
1953 E. Apache
Tempe, AZ 85281
This Indexed Relocatable Library
allows programs written in CB80 to
create and directly access files in
dBASE II format. Many of the 37
functions such as SELECT, USE, AP-
PEND, SKIP, COUNT and RECALL
are very similar to their dBASE II
counterparts while others, such as
FLDNAM (which returns the name
of a field) and NEWFLD (which
changes the name of a field), are
powerful extensions to the language.
A CB80 program using the dBFILE
library can process as many as 10
"DBF" or ".DBR" files at the same
time (the dBASE II limit is 2) and can
create and modify structures that are

fully compatible with dBASE II.
Price: $295, Manual and Demo: $50

NUTRI-BYTES

Center for Science
in the Public Interest

1755 S. St. NW
Washington DC 20009
This program is developed to en-
courage proper diet. It includes
nutrition and food additive quizzes,
a diet analysis, and a food additive
data base. It is menu-driven and sim-
ple to use. It is intended especially
for health clinics, health fairs, doc-
tors' offices, and schools. Nutri-
Bytes provides an understanding of
the healthfulness of our food supply
and some of the corporate and
governmental forces that help shape
America's diet and food policies. The
"Chef Pennypincher" diet analysis
asks the user about the types of foods
he or she eats and provides a diet
score as well as personalized advice
based on the answers. Quizzes on

food additives and nutrition also
provide scores to rate the user's
knowledge.

Requirements: CP/M, 64K
New Versions

BUG & p BUG v3.4 for Z80 only
FLOAT-87 for BASIC-86, LATTICE

"C", & PL/I-86 under CP/M-86
Insurance (UNIVAIR 9000) w/ & w/o

PAYABLES v2.01
Medical (UNIVAIR 9000) v2.07
Dental (UNIVAIR 9000) v2.07
Legal Time Accounting (UNIVAIR

9000)v2.01
General Ledger (UNIVAIR 9000)

v2.0
MAGIC KEYBOARD v 2.0/1.1
MAG/base-1, -2, & -3 v3.01

(compiled under CB-80)
PAS-3 Dental vl.75

(compiled under CB-80)
PLINK-86 vl.25 for MS-DOS

Lifelines/The Software Magazine, Volume IV, Number 3 35

(continued from page 26)
pulse dialing (P) for the first seven
numbers (6558931); then pause for 8
seconds („„); then use touch-tone
dialing (T) for the last ten numbers
(6037895645); then stop dialing (;).
This sequence might be used to dial a
long distance call on MCI (which re-
quires touch - tone) when using
pulse dial local telephone service
(which is generally less expensive
than touch-tone service). The eight
second pause allows MCI to connect.
The final semicolon allows you to
pick up the phone and talk without
having to worry about a modem
screaming in your ear.

The Hayes Smartmodem is an ex-
cellent product that is currently gain-
ing wide acceptance among
microcommunicators. Indeed, re-
cent microcommunications software
releases for the IBM Personal Com-
puter have almost invariably includ-
ed some form of direct support for
the device. Many of the microcom-
munications software packages
which will be reviewed in coming

months, support the smartmodem,
and if the trend toward supporting
its software features continues, they
may soon become something of a
software standard which could well
be emulated by other modem
makers. n

serious thought to writing applica-
tions software, documentation for
software already in the marketplace
and in widespread use, or books on
hardware/software. The larger cor-
porations have brute force at their
command but a competent program-
mer working in his basement can be a
very tough competitor.(continued from page 2)

micros. The higher baud rate is caus-
ing many to think seriously of the
feasibility of using micros for tele-
communications of files of all types
in a wide variety of applications.

There is currently more of an oppor-
tunity than ever for the independent
software developer to make serious
inroads into the software market.
The availability of machines such as
the IBM-PC and its many clones,
together with the excellent develop-
ment tools such as Lattice C, is stimu-
lating a tremendous amount of de-
velopment effort among the cottage
industry.

If you are looking for an excellent way
to supplement your income give

If you are a frustrated author, try
writing articles for computer maga-
zines. Computer publications are in
such great abundance that they are
all scrambling for articles of virtually
any kind. Writing is a good way to
achieve recognition in the microcom-
puter field and they pay you for your
words too! g|

SUPPED P ’SK

No JusT >
.Ti&HT ovs

Version 2 For Z-80, CP/M (1.4 & 2.x),
& NorthStar DOS Users

The complete professional software system, that meets
ALL provisions of the FORTH—79 Standard (adopted Oct.
1980). Compare the many advanced features of FORTH-
79 with the FORTH you are now using, or plan to buy!

OURS OTHERSFEATURES
79-Standard system gives source portability. YES
Professionally written tutorial & user manual. 200 PG.
Screen editor with user-def inable controls. YES
Macro-assembler with local labels. YES
Virtual memory. YES
BDOS, BIOS & console control functions (CP/M). YES
FORTH screen files use standard resident

file format. YES
Double-number Standard & String extensions. YES
Upper/lower case keyboard input. YES
APPLE I l/l l+ version also available. YES
Affordable! $99.95
Low cost enhancement options;
Floating-point mathematics
Tutorial reference manual
50 functions (AM951 1 compatible format)

Hi-Res turtle-graphics (NoStar Adv. only)

YES ________

YES ________
FORTH-79 V.2
ENHANCEMENT PACKAGE FOR V.2:

Floating point
COMBINATION PACKAGE (Base & Floating point)

$99.95

$ 49.95
$139.95CompuitRS ftRE cML-y fts smrr

THE ftopLE WHO
PBOGRftrvx “THE’PX

(advantage users add $49.95 for Hi-Res)
(CA. res, add 6% tax; COD & dealer inquiries welcome)

MicroMotion
12077 Wilshire Blvd. # 506
L.A. .CA 90025 (213) 821-4340
Specify APPLE, CP/M or Northstar
Dealer inquiries invited.

36 Lifelines/The Software Magazine, August 1983

Now dBASE II is made easy with Quickcode by Fox &
f J f Geller. QUICKCODE is a program generator, a computer program which writes com-
* puter programs.

0

FAST AND SIMPLE
With QUICKCODE you can generate a customer database in 5 minutes. Its that

fast. All you have to do is draw your data entry form on the screen. It’s that simple!

NO PROGRAMMING REQUIRED
QUICKCODE writes concise programs to set up and maintain any type of

database. And the wide range of programs cover everything from printing mailing labels
and form letters, to programs that let you select records based on your own requirements.
There are even four new data types that are not available with dBASE II alone.

YOUR CONTROL j
And since you work directly with your information at your own speed and

your own style, you maintain complete control. Telling your computer what to do has
never been so easy.

QUICKCODE, by Fox & Geller. Absolutely the most power-
ful program generator you’ve ever seen. Definitely the
easiest to use.

Ask your dealer for more information on QUICKCODE and all the other
exciting new products from Fox & Geller.FOX&GELLER

Fox & Ge l le r , Inc. Dept. LI F 001 604 Market Street Elmwood Park, N.J. 07407 (201) 794-8883

QUICKCODE trademark of Fox & Geller. Inc
dBASE II is a trademark of Ashton-late

e
s 7 The Softw

are M
agazine™

iird A
ve., N

ew
 Y

ork, N
ew

 Y
ork 10028

E
X

P
IR

A
T

IO
N

 D
A

T
E

:
.1

2
/8

3
P

At S
m

ithtow
n, N

.Y.

	lt20248-06-0001

